

RaimaDB Version 16

Architecture and Features

By David Nguyen, Director of Engineering & QA – February 2024

Abstract

RaimaDB 16.0 is an embeddable database management product which connects all types of devices from the edge of the

cloud to enterprise databases completing the Internet of Things platform. Raima´s libraries, APIs and utilities can be

employed in countless combinations, assuming the responsibility for data collection, storage, management and movement.

Programmers using RaimaDB v16.0 can focus on their specialty rather than worry about managing their data. Given the

variety of computing needs, a “one shape fits all” product will quickly be pushed beyond its limits. This paper discusses

RaimaDB 16.0’s different configurations and solutions built from those pieces into a number of configurations.

RaimaDB 16.0 can be used for meaningful solutions in multiple industries and deployment platforms, including Automotive,

Industrial Automation, Aerospace and Defense, Oil and Gas, Telecommunications, and Medical. Deployment platforms

include standard desktop computers, cloud, embedded computers and mobile devices. This paper is for those who want

more than “what” RaimaDB can do, but also “how” it does it. As much as possible, this paper will just state the facts, and leave

the hype out. A basic understanding of application software development is required to fully understand these facts. Also,

knowledge of operating environments, such as Linux, Windows, Realtime/embedded operating systems, networking (both

Local- and wide area), mobile environments, and computer architectures is assumed.

Prerequisites: A basic understanding of application software development.

1

Table of Content

Abstract 0	

Table of Content 1	

The Bigger Picture 3	

Database Packaging and Functionality 4	

RaimaDB Core Packaging 5	

Data Modeling 5	

Data Definition Language (DDL) 8	

Geospatial support 9	

Dynamic DDL 10	

Time Series 10	

The Basics of Database Engine Implementation 11	

Support For Multiple API’s 12	

Raima´s core API (C/C++) 13	

Object Oriented C++ API 14	

Cursor View 15	

ODBC/SQL API 16	

JDBC API 17	

Raima’s Transactional File Server Concept 17	

Data Storage Engine 21	

Database Portability 22	

RaimaDB Enterprise Package 22	

SQL Standard 22	

SQL Array 22	

SQL Unions 23	

SQL Inner and Outer joins 23	

SQL Scrollable cursors 23	

SQL Triggers 24	

SQL PL 24	

REST API 26	

2

Rest Admin GUI 27	

Raima Performance Features 28	

Raima’s Snapshot Mode 28	

In-memory Database Operation 28	

Shared Memory Transport 30	

Utility Programs 30	

Security Through Encryption 35	

Third Party Replication 35	

Interoperability 35	

Near Future 35	

Conclusion 36	

Quick Start 36	

Environmental setup 36	

Create the database 37	

Populate the database 37	

Query the database 39	

3

The Bigger Picture

RaimaDB is a Software Development Kit (SDK) containing set of libraries and utilities that allow

development of programs that perform ACID-compliant database management. RaimaDB becomes

a part of the application program, being responsible for the database management requirements.

RaimaDB is easily configurable, allowing it to serve a simple role within a single process in a single

computer, or a much more sophisticated role in a wide-area network of cooperating computers and

processes sharing distributed databases. Figure 1 shows RaimaDBs relationship to application code

and its operating environment.

RaimaDB is fast and optimized. It contains an in-memory implementation designed specifically for

quick data access and modification but also with the flexibility of being later stored on disk as

needed. The on disk implementation utilizes an encoded database pack file format to also

streamline insertions and updates. RaimaDB is easy for developers to use. It supports both

proprietary and standard Application Programming Interfaces (APIs). Proprietary APIs are directly

callable by C/C++ programs and support low-level database operations, object-oriented operations,

or SQL language. Standard APIs support SQL language and SQL PL through ODBC, or JDBC. Nearly

any development environment and language a software engineer is familiar with is supported

allowing for quick development and deployment. Figure 1: RaimaDB

4

RaimaDB is compact and portable. It is written in the C language and can be built for almost any

system that supports a C compiler. Thus, it runs on multiple operating systems, from larger Unix to

small embedded or mobile systems. It runs on all common CPUs. It can be built for either 32- bit or

64-bit programs. Its memory and disk footprint are very small compared to other DBMSs with

equivalent functionality, so it is available to solve problems on computers not previously considered

powerful enough for non-trivial programming. The database files themselves are stored in a

proprietary format, allowing the files to be directly copied onto any platform and utilized without

data massaging or byte swapping. The RaimaDB APIs are reentrant. This means that programs

running 2 or more threads can use RaimaDB concurrently. Multithreading also permits exploitation

of multiple CPUs and multiple Cores, enhancing overall performance. The selection of multiple APIs

means that you can use one you are familiar with (for example, ODBC or JDBC), or a low-level, high-

performance API like the one we call the Core(C/C++). RaimaDB also supports mixing and matching

of API’s seamlessly and within the same application.

RaimaDB is system software, written in C to eliminate the overhead of higher-level languages. It

performs data caching, disk I/O, and networking, implementing efficient database algorithms to

manage data and database processing like SQL optimizations and query execution. The result is a

fast and efficient system that leaves room for the application program to perform its own

specialized functionality.

The remainder of this White Paper looks at components and features of RaimaDB at a high level

with hands-on examples. This is not a Users Guide or Reference Manual, and is not exhaustive or

rigorous in its descriptions.

Database Packaging and Functionality

RaimaDB comes in two different packages: RaimaDB Core and RaimaDB Enterprise.

RaimaDB Core contains only the core cursor C and C++ API interfaces. These are the underlying and

most-optimized APIs designed for use with the C/C++ programming language. It includes all the

utilities as well.

RaimaDB Enterprise contains both the core cursor API and the SQL interface in addition to all the

remaining APIs. This package allows for the use of the JAVA JDBC interface and the ODBC interface. It

also has full support for third-party connectivity and administrative tools, in addition to supporting

the full legacy API from previous versions of the RaimaDB product line. It includes the latest REST

interface and Administrative GUI as well.

Digging inside this system, we find most of the technology is within the RaimaDB core database

engine with the other packages allowing for various interfaces into the database system.

5

RaimaDB Core Packaging

Storage Media

An RaimaDB is composed of computer files. These files are stored in an operating system’s file

system, which can be using disk drives, SD RAM, or SSD as the underlying media. RaimaDB uses

standard file I/O functions to access the file system. Data stored in the files are portable, or

"platform agnostic" so that they may be directly copied between any two computers.

RaimaDB contains has a new data storage engine optimized specifically for working with memory

resident data sets. This new In-memory Database Engine (IMDB) allows for significant performance

gains and a reduction in processing requirements compared to the On-disk-engine. The RaimaDB

IMDB runs alongside the RaimaDB On-disk engine and databases can be opened with either one.

Database Functionality

As a basis for any database, you have a representation of your data, and operations on that data.

The representation of the data, which can also be called the data model, is the way the database’s

user sees the data. Data is created, deleted and changed in this representation through operations

on the database. Databases are normally shared and contain valuable information, so the

operations on a database must follow carefully defined rules.

This database functionality is implemented in libraries of functions we call the “runtime libraries,”

referring to what is linked (or "embedded") into an application program. It is also called the Core,

because it is available to application programmers and other higher-level database functionality like

SQL or the C++ object oriented interface.

Data Modeling

Relational Model

The most commonly understood data model today is the relational model, where all data is defined

in terms of tables and columns. We will not define the relational model here but will note that

RaimaDB defines a database using SQL, (see below) the predominant relational database language.

Relationships in a pure relational model are defined by associating common columns between two

tables through what are called primary and foreign keys. Indexing is a common method used to

optimize relational queries.

6

Network Model

Beneath the relational model in a RaimaDB is a network model, where all data is defined in terms of

record types ("tables") and fields ("columns"). Fields may be indexed, and record types may have set

relationships between them, which are defined as one-to-many, owner/member relationships. One

record is an instance of a record type. In relational terminology, a row is a single line in a table.

RaimaDB uses the set construct to implement primary and foreign key relationships, which will be

shown in the DDL examples below.

Graphical View

The RaimaDB manual frequently uses a graphical representation of tables/columns ("record-

types/fields") to show the structure of data in an easily understood form. The following figure shows

a simple data model for students enrolled in classes:

Figure 2 : Students and Classes

7

Figure 2 shows three table types: class, student and enrollment. There may be any number of

classes or students, each represented by a row in the class or student table. If there is a relationship

between a student and a class, it is represented by the existence of an enrollment row that is

associated with a student and a class. The arrows in the diagram represent a one-to-many

relationship, where one student may be associated with 0 or more enrollments, and one class may

be associated with 0 or more enrollments. An enrollment doesn’t make sense unless it is associated

with both a class and a student, so it must always be connected (associated) to one of each.

A typical tabular view, or relational view showing table definitions would be as follows:

Figure 3: Relational Representation

The tabular view of the data structure makes more sense with an example, shown below with three

students related to three classes, each represented by a row in a table:

Figure 4: Relational Data

8

The above example data shows Joe attending one class now, and enrolled in one next year; Sarah

attending one class, having already passed one earlier; Henry attending one class.

The next section shows the SQL language used by RaimaDB to define this structure and allow the

storage and viewing of data.

Data Definition Language (DDL)

Databases are always initially defined as a set of tables and columns. Attributes of the columns and

relationships between tables are also defined in the DDL.

RaimaDB compiles DDL and maintains a “catalog” file that is easily ingested by the runtime library.

The catalog is formatted as JSON. During the lifetime of a database, the catalog may be modified

through database alteration commands.

RaimaDB defines its tables, column, indices and relationships using SQL. To model the student and

class data shown above, SQL DDL is written:

create database students;

create table class (

class_id char(6) primary key, class_name char(29)

);

create table student (

student_name char(35) primary key

);

create table enrollment (begin_date integer, end_date integer, status char(9), current_grade integer,

class_students char(6) references class,

student_classes char(35) references student);

This simple database will be used to illustrate some of the following examples.

The following types of data are supported in the database definition language:

Integer – 8-bit, 16-bit, 32-bit, 64-bit, signed or unsigned.

Character – single or string, fixed length, variable or large variable.

Boolean – True or False.

Float, Double - either 32-bit or 64-bit floating point numbers.

Date, Time, Timestamp - date, time or both together.

9

BCD - decimal numbers with variable precision and length.

GUID - globally unique identifier - 128-bit unique value. Binary – array or blob.

Indexes may be created on columns or combinations of columns. They are used to quickly locate a

row given a key value, or to optimize queries of database contents. Four types of indexes are

available: b-tree, hash, AVL, and r-tree. The b-tree index maintains key ordering according to

commonly accepted collating sequences (e.g. alphabetic order), so index navigation is possible from

one key to the previous or next key. A hash index is used to quickly find a key, if it exists. Once

found, it is not possible to move to the next higher or lower key value. An AVL tree is very optimized

for in-memory type applications. They work well with data that can fit entirely in-memory. R-tree

indexes are designed to be used with geospatial data.

Geospatial support

With 14.1, Raima added support for the r-tree index type. This index is an optimized multi-

dimensional index/array. It is designed for special access methods like geographical coordinates,

rectangles or polygons which are commonly used for geospatial purposes. They can store locations

or things like buildings very efficiently and when issued queries to provide information like “Return

me every building within 1 mile”, it is quickly retrieved and displayed. They can be utilized through

both the SQL API and the standard CORE API.

For example, let us assume the following schema is used:

create table mytable(…

rectangle int32 array[4] key using r_tree not null;

…);

Then a query would look as follows:

select * from mytable where array[1,90,-45,+45] contains rectangle;

This would return the rows from mytable which are contained with the box bounded by [1, 90, -45,

+45]. Additionally, Raima now provides built in support for data queries using the following shapes:

point, line, circle, box and tilted boxes.

10

Dynamic DDL

SQL DDL allows tables to be created or dropped at any time.

The STUDENTS DDL above consists of three CREATE TABLE statements. Frequently these are defined

in a text file and submitted to an SQL compiler all at once. However, SQL allows them to be defined

at any time.

An index may be created at any time, although it is recommended that they be defined at the same

time as the tables.

RaimaDB Dynamic DDL is fast. Operations that add or drop columns are instantaneous. New

columns will have null or default values until otherwise set. Dropped columns remain in the stored

rows but are ignored and will be eliminated if the row is modified.

As a simple example, we can add a column to the student table using the rdm-sql utility (discussed

more later) as follows:

c:\RDM> rdm-sql

Enter ? for list of interface commands.

rdm-sql: alter database students;

rdm-sql: alter table student

rdm-sql> add column student_addr char(50);

rdm-sql: alter table student

rdm-sql> add column student_gpa float;

rdm-sql: commit; rdm-sql:

The new columns, student_addr and student_gpa, will appear to exist in subsequent queries

immediately, but will have null values.

Note that the database schema is now different than the initial schema definition.

Time Series

With 15.0, Raima has added support for time series data. A C++ API can be generated specifically for

any time series data. Time series is a data model for data that is collected periodically over some

time. The data will typically be indexed, listed, analyzed, and graphed. Raima also supports Fast

Fourier Transforms (FFT) to convert data between time and frequency domains. Time domains are

data sampled on discrete timestamps whereas frequency domains are data sampled with respect to

frequency over a time interval. Raima has a built in simple FFT algorithm but also contains support

for custom or third party FFT algorithm libraries. The generated template class in RaimaDB allows

for automatic processing of data prior to insertion into the database.

11

The Basics of Database Engine Implementation
ACID

RaimaDB is an ACID-compliant DBMS, meaning it maintains the following properties:

Atomicity Multiple changes to a database are applied atomically, or all-or-

nothing, when contained within the same transaction.

Consistency

Data relationships are made to follow rules so they always make

sense.

Isolation

When multiple readers or writers are interacting with the database,

none will see the partially

done changes of another writer.

Durability

Changes that are committed in a transaction are safe. Even if

something happens to the program

or the computer’s power, the updates made during the transaction

will exist permanently in the

database.

Maintaining the ACID properties is the “hard work” of a DBMS. Application programmers shouldn’t

handle these issues directly themselves. RaimaDB uses standard methods to implement them, as

will be shown below. A key concept when viewing or updating a database is that of a transaction.

Atomicity has to do with the grouping of a set of updates as one transaction. Consistency has to do

with rules – for example the existence of a key in an index means that the row containing that key

column value exists too. Isolation has to do with a community of users never seeing changes done

by others

except as completed transactions. Durability has to do with writing to the database in a way that

causes the entire group of updates to exist or not exist after a crash and recovery.

12

Support For Multiple API’s
Raima supports the following API’s:

● C/C++ with Cursor view

● JDBC 4.2 Type 4 – Raima´s Java API allows for database connection through Java.

● ODBC 3.9 – ODBC standard API database connection

Application Programmer Interfaces

Using the simple schema and data from above, this section will show how each API can be used to

obtain the same results.

Please note that proper programming dictates that function return codes are checked after each

call. The following examples omit this to allow focus on the actions of each function.

13

Raima´s core API (C/C++)
RaimaDB’s primary API for C/C++ programmers uses the cursor view of data and is commonly called

the Core API. It is fully aware of the set relationships between different types of rows but shows set

members as the contents of a cursor, as shown in this example.

The header file "students_structs.h" is an artifact of "rdm-compile -c students.sdl", and contains

structure definitions and constants used within the code.

#include "rdm.h"

#include "rdmapi.h" #include "tfsapi.h"

#include "students_structs.h"

RDM_RETCODE list_class_info(char *classId)

{

RDM_TFS tfs; RDM_DB db;

RDM_CURSOR cClass = NULL;

RDM_CURSOR cEnrollment = NULL; RDM_RETCODE rc;

ENROLLMENT enrollment_rec;

rdm_tfsSetOptions(tfs, “TFSTYPE=embed;DOCROOT=.”);

rdm_rdmAllocTFS (&tfs); rdm_tfsAllocDatabase (tfs, &db);

rc = rdm_dbOpen (db, "students", RDM_OPEN_EXCLUSIVE); if (rc != sOKAY) {

printf("Error %d opening database\n", rc); return rc;

}

rdm_dbAllocCursor(db, &cClass); rdm_dbAllocCursor(db, &cEnrollment);

rc = rdm_dbGetRowsByKeyAtKey(db, COL_CLASS_CLASS_ID, classId, 0, &cClass); if (rc != sOKAY)

printf("Error %d in rdm_dbGetRowsByKeyAtKey\n", rc); if (rc == sOKAY) {

rc = rdm_cursorGetMemberRows(cClass,REF_ENROLLMENT_MY_STUDENTS,&cEnrollment); if (rc != sOKAY)

printf("Error %d in rdm_cursorGetMemberRows\n", rc);

}

if (rc == sOKAY) {

while ((rc = rdm_cursorMoveToNext(cEnrollment)) == sOKAY) { rdm_cursorReadRow(cEnrollment, &enrollment_rec,

sizeof(ENROLLMENT), NULL); printf("\t%s %s %d, %s\n", enrollment_rec.student_status,

rdm_dateMonthAbr(enrollment_rec.begin_date),

rdm_dateDayOfMonth(enrollment_rec.begin_date), enrollment_rec.my_classes);

}

}

rdm_dbClose(db); rdm_dbFree(db); rdm_tfsFree(tfs)

14

Object Oriented C++ API

The C++ interface to RaimaDB is designed to augment the Core API by providing database specific

sets of classes implementing higher-level abstractions. These generated interfaces are built to fit

your specific database schema using an object orientated approach. The C++ API is designed for

ease of use, but by giving full access to both RaimaDB's network and relational functionality, it is

very powerful and can be used to create efficient database applications. There are two main

interfaces that comprise the RaimaDB C++ API, the Db interface which encapsulates access to a

particular database and the Cursor interface which encapsulates access to records within a

database. These interfaces contain methods that are common to all databases and records and

methods that are specific to a particular schema. By using these interfaces the C++ programmer is

able to create applications that safely and efficiently query, insert, update, and delete data stored in

a RaimaDB.

The header file "students_api.h" is an artifact of "rdm-compile -x students.sdl", and contains the

customized class definitions used within the code.

#include <iostream>

#include "students_api.h"

using namespace RDM_CPP; using namespace std;

RDM_RETCODE list_class_info(const char *classId)

{

Db_students db; Cursor_class cClass; Transaction trans;

ENROLLMENT enrollmentData; RDM_RETCODE rc;

Cursor_enrollment cEnrollment; try {

db = Db_students(TFS::Alloc("TFSTYPE=embed;DOCROOT=.").AllocDatabase());

db.Open(RDM_OPEN_EXCLUSIVE);

trans = db.StartRead();

cClass = db.Get_class_RowsBy_class_id(classId);

cEnrollment = cClass.Get_enrollment_my_students_MemberRows(); cEnrollment.MoveToFirst();

while (cEnrollment.GetStatus() == CURSOR_AT_ROW)

{

cEnrollment.ReadRow(enrollmentData); cout << "\t" << enrollmentData.student_status;

cout << " " << rdm_dateMonthAbr(enrollmentData.begin_date); cout << " " << rdm_dateDayOfMonth(enrollmentData.begin_date); cout

<< " " << enrollmentData.my_classes << endl; cEnrollment.MoveToNext();

}

trans.End();

}

catch (const rdm_exception& e)

{

/* We display the error message in the controller class */ rc = e.GetErrorCode();

cerr << "Error: " << rc << " " << endl; trans.EndRollback();

}

return rc;

15

Cursor View

Raima´s cursor view of data is a cursor is opened by specifying a group of rows that is thereafter

managed by a cursor handle. Once a cursor is opened, it will have a current position within the

group and provide the ability to navigate from that position, or to read/write/delete/update data.

Cursors eliminate a shortcoming of the currency view. Currency allows only one current record for

any type. For example, ifthe current owner and member of the set between class and enrollment

(called class_students) is set to the class identified as “MATH01” and the first member, there can be

no other current owners or members retained elsewhere. If another class_students set instance

needs to be scanned, the existing current records must be saved (as database addresses) and then

restored.

Cursors, however, will allow any number of cursor instances to be opened, each with its own

position. So two cursors can be opened, one based on the owner and members of “MATH01” and

another based on “SOFT03”, allowing independent navigation within each cursor.

An SQL result set can also be viewed as a cursor. When SQL creates any number of statement

handles, it can navigate them independently.

16

ODBC/SQL API

Access to SQL is done through the ODBC API. This API has two forms. The Microsoft ODBC Driver

manager allows 3rd party tools to access the RaimaDB’s through RaimaDB’s ODBC API. But C/C++

programmers may write programs that call the ODBC API directly and not through the driver

manager. This example shows a program calling ODBC functions directly.

#include "sqlext.h"

#define SQL_EMPSTR ((SQLCHAR *) "")

const char *mAbbr[] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun",

", "Sep",

"Oct", "Nov", "Dec"};

SQLRETURN list_class_info(char *classID)

{

SQLHENV hEnv; SQLHDBC hDbc; SQLHSTMT hStmt;

SQLRETURN odbcCode;

(void) SQLAllocHandle(SQL_HANDLE_ENV, NULL, &hEnv); (void) SQLAllocHandle(SQL_HANDLE_DBC, hEnv, &hDbc);

(void) SQLConnect(hDbc, SQL_EMPSTR, SQL_NTS, SQL_EMPSTR, SQL_NTS, SQL_EMPSTR, SQL_NTS);

(void) SQLAllocHandle(SQL_HANDLE_STMT, hDbc, &hStmt);

odbcCode = SQLExecDirect(hStmt, (SQLCHAR *) "OPEN DATABASE students", SQL_NTS); if (SQL_SUCCEEDED(odbcCode)) {

char strStmt[100];

char student_status[10]; char my_classes[36]; DATE_STRUCT begin_date;

sprintf(strStmt, "SELECT student_status, begin_date, my_classes "

"FROM enrollment where my_students = '%s'", classID); (void) SQLExecDirect(hStmt, strStmt, SQL_NTS);

while ((odbcCode = SQLFetch(hStmt)) == SQL_SUCCESS) { (void) SQLGetData(hStmt, 1, SQL_C_CHAR, student_status,

sizeof(student_status), NULL);

(void) SQLGetData(hStmt, 2, SQL_C_TYPE_DATE, &begin_date,

TECHNICAL WHITEPAPER

Page 13 of 32

sizeof(begin_date), NULL);

odbcCode = SQLGetData(hStmt, 3, SQL_C_CHAR, my_classes,

sizeof(my_classes), NULL);

if (SQL_SUCCEEDED(odbcCode))

printf("\t%s %s %d, %s\n", student_status, mAbbr[begin_date.month-1],

begin_date.day, my_classes);

}

}

(void) SQLFreeHandle(SQL_HANDLE_STMT, hStmt);

(void) SQLDisconnect(hDbc);

(void) SQLFreeHandle(SQL_HANDLE_DBC, hDbc);

(void) SQLFreeHandle(SQL_HANDLE_ENV, hEnv);

return odbcCode; }

17

JDBC API

RaimaDB supports the JDBC standard SQL access to databases. Access to the RaimaDB functions

from Java is facilitated in two ways. The single-process method uses JNI to call the local C

procedures. The other method is pure Java, using a Type 4 driver to a separate server process

identified in the DriverManager.getConnection() method. In the example below, the local, JNI form is

used.

import java.sql.*;

import java.text.SimpleDateFormat;

…

private static void list_class_info(String classID) throws SQLException { Connection conn = null;

Statement stmt = null; ResultSet rs = null;

SimpleDateFormat dateFormat = new SimpleDateFormat("MMM d"); try {

/* Create the connection with a simple connection string */

conn = DriverManager.getConnection("jdbc:raima:rdm://local"); conn.setAutoCommit(true);

CreateDatabase(conn); LoadDatabase(conn);

/* Open the connection to the database */ stmt = conn.createStatement();

rs = stmt.executeQuery("SELECT student_status, begin_date, my_classes " + "FROM enrollment where my_students = '" +

classID + "'");

while (rs.next() != false)

{

System.out.println("\t" + rs.getString("student_status") + " " + dateFormat.format(rs.getDate(2)) + ", " + rs.getString("my_classes"));

} }

catch (SQLException sqle) { sqle.printStackTrace();

} finally { rs.close();

stmt.close();

conn.close();

}

}

Raima’s Transactional File Server Concept
The Transactional File Server (TFS) specializes in the serving and managing of files on a given

medium. The TFS API is a set of functions called by the runtime library to manage the sharing of

databases among one or more runtime library instances. In a normal multi-user configuration (see

below for more about configurations), the TFS functions are wrapped into a server process called

rdm-tfs that listens for runtime connections and serves the connections with remote procedure

calls. This listener my be started in applications built with RaimaDB, but this is a more advanced

topic. To connect to a particular rdm-tfs process, the runtime library needs to know the domain

18

name of the computer on which rdm-tfs is running, and the port on which it is listening, for example,

“tfs.raima.com:21553”. Standard TCP/IP can be used to make the connection, whether the runtime

library and rdm-tfs are on the same computer or different computers (when on the same computer,

optimizations are made, and a sharedmemory protocol is available by default).

Figure 5: Runtime Library/TFS Configuration

In Figure 5, it shows that one runtime library may have connections to multiple rdm-tfs processes,

and one rdm-tfs may be used by multiple runtime libraries. To the applications using the runtime

libraries, and the rdm-tfs processes, the locations of the other processes are invisible, so all

processes may be on one computer, or all may be on different computers. This provides

opportunities for true distributed processing. An rdm-tfs should be considered a “database

controller” in much the same way as a disk is managed by a disk controller. A TFS is initialized with a

root directory (elsewhere called the "document root") in which are stored all files managed by the

TFS. If one computer has multiple disk controllers, it recommended that one rdm-tfs is assigned to

each controller. This facilitates parallelism on one computer, especially when multiple CPU cores are

also present.

A complete system may have multiple rdm-tfs running on one computer, and multiple computers

networked together. Each rdm-tfs will be able to run in parallel with the others, allowing the

performance to scale accordingly.

TFS Configurations

19

There is a clear delineation between the runtime library and the TFS. The runtime library

understands and manipulates databases, using catalogs that describe the database structure and

keeping a local cache of database objects that have been read, created or modified at the request of

the application. All of the row and column interpretation is done within the runtime library. The

runtime library needs to have a handle to one or more TFSs to do any work.

The TFS is responsible for safely storing the retrieving objects, regardless of the contents of those

objects. To the TFS, the objects are opaque sequences of bytes with a given length. When asked to

store objects, it does so in a way that is transactionally safe and recoverable. When asked to retrieve

objects, it returns the same opaque sequence of bytes. It is like a key/value store, but very fast and

transactionally safe. The TFS owns and is co-located with the database files.

This delineation allows for a number of configurations between the runtime library and the TFS.

Physically, the TFS functions may be called directly from within the runtime library in order to

operate on database files that are visible to the application process. The TFS functions may also be

wrapped into a server process and called through a Remote Procedure Call (RPC) mechanism on the

behalf of runtime libraries that are executing within other processes. This distinction between local

and remote access to the TFS functions is called "embed" or "remote", and the application

programmer may choose between them.

The "embed" configuration is used when an application process with one or more threads uses a

database that is not shared with other processes. The "remote" configuration is used when the TFS

functions are running within a server process.

By default, the "hybrid" configuration allows a runtime library to select an embedded or remote TFS

at run time. It is possible to restrict an application to only embedded or only remote in order to save

code space. The restriction is accomplished by using specific RaimaDB libraries when linking the

application. However, the default library permits the location of the TFS to be identified when a

database is opened.

The following code fragments demonstrate some of the options and assumes that the application

executable has been linked with the default TFS library.

Open a database located from the current directory:

RDM_DB db;

/* Defaults for TFS options: hybrid, document root is current directory */ rdm_rdmAllocTFS ("", &tfs);

rdm_tfsAllocDatabase (tfs, &db);

/* open the database named 'students', stored in a subdirectory of the

* current directory, named 'students'

*/

rc = rdm_dbOpen (db, "students", RDM_OPEN_EXCLUSIVE);

20

Open a database located on a remote computer:

/* Defaults for TFS options: hybrid, but will open "remote" database */

rdm_rdmAllocTFS ("", &tfs); rdm_tfsAllocDatabase (tfs, &db);

/* open the database named 'students', managed by a TFS process running on a

* remote computer with a visible domain name 'tfs.raima.com' on port 21553

*/

rc = rdm_dbOpen (db, "tfs-tcp://tfs.raima.com:21553/students", RDM_OPEN_SHARED);

Open a database in the directory "C:\RaimaDB\students" using document root "C:\RaimaDB":

/* hybrid TFS, document root is current directory */

rdm_tfsSetOptions(tfs, “DOCROOT= c:\\RaimaDB”); rdm_rdmAllocTFS (&tfs);

rdm_tfsAllocDatabase (tfs, &db);

/* open the database named 'students', found in a directory named

* c:\RaimaDB\students'

*/

rc = rdm_dbOpen (db, "students", RDM_OPEN_EXCLUSIVE);

The following rdm_dbOpen() attempt will fail because the TFS type was specified as "embed" but the

URI specifies a remote database:

/* hybrid TFS, document root is current directory */

rdm_tfsSetOptions(tfs, “TFSTYPE=embed;DOCROOT= c:\\RaimaDB”); rdm_rdmAllocTFS (&tfs);

rdm_tfsAllocDatabase (tfs, &db);

/* open the database named 'students', stored in a subdirectory of the

* current directory, named 'students'

*/

rc = rdm_dbOpen (db, "students", RDM_OPEN_EXCLUSIVE);

21

Open two databases. One local, one remote. Both databases are named "students". The local

database is found in the directory "C:\RaimaDB\students" using document root "C:\RaimaDB". The

remote database is opened through the URI "tfstcp:// tfs.raima.com/students" where the TFS is

running as a server (probably rdm-tfs) with a document root on that computer

(note that this application doesn't need to know the remote document root). Note also that the

default port for a TFS is 21553. If the TFS is started up with a port other than 21553, it is necessary to

include that port in the URI:

/* hybrid TFS, document root is current directory */

rdm_tfsSetOptions(tfs, “TFSTYPE=embed;DOCROOT= c:\\RaimaDB”); rdm_rdmAllocTFS (&tfs);

rdm_tfsAllocDatabase (tfs, &db);

/* open the database named 'students', stored in a subdirectory of the

* current directory, named 'students'

*/

rc = rdm_dbOpen (db, "students", RDM_OPEN_EXCLUSIVE);

Data Storage Engine

Under a directory we call the "document root", one or more databases may be stored, each within a

subdirectory named after the database with the suffix “.rdm”. For example, a database named

“students” will be a subdirectory of a document root, with the name “students.rdm”. In this

subdirectory will a file named p00000000.pack. The contents of this file, is the database catalog (in

JSON format) and the database objects in a compressed “pack” file. Database objects can be rows, b-

tree nodes, or other stored objects.

When an object stored in the pack file is modified, its location is changed. The old object will remain

in place until it is no longer needed (as may be the case with MVCC operations), but will eventually

be permanently abandoned. Then its space will be cleaned up through a vacuuming process.

RaimaDB will, at any given time, contain a database which will have a certain percentage of empty

space.

An important issue with durable storage like disk and SD RAM is that an operating system will

almost always maintain a filesystem cache of the file contents for performance reasons. If file

updates are written into the file system, they first exist in the cache only. If the computer stops

functioning before writing the cache contents to the permanent media, not only can the updates be

lost, but the files may be left in an inconsistent state.

To safeguard against this, RaimaDB asks the operating system to “sync” a file at key moments,

ensuring that the data is safe no matter when a computer may fail. The “sync” operation

(synchronize to disk) will not return control to the program until the file contents exist on the

permanent media. Any database system that guarantees the safety of data must have sync points in

its transaction handling.

22

Database Portability

RaimaDB’s file format was specifically designed to be portable. Portable database files has two

effects:

● Databases may be created in one environment and freely copied to other environments for

use there. For example, a large database of static information may be created in a central

office and distributed for use at several branch offices running different types of computers.

● Databases may be concurrently accessed by applications running on computers with

different operating systems or CPU architectures.

To accomplish this, every piece of data is given a location and length in the files and is always

reconstructed in memory for use by the local computer. This may mean that it is decompressed or

decrypted. It may also mean that an integer value is translated into the local integer format. In fact,

any integer stored in the database is translated into Raima’s proprietary ‘varint’ (variable integer)

format, using only as many bytes as are required to hold the value. In other words, a small value like

10 will be stored in 1 byte, but 10,158 will require 2 bytes. Integers with values requiring 17 bytes

may be stored in the RaimaDB pack. C structures are never used to store or retrieve groups of

values, because structure alignments vary by C compiler and CPU.

RaimaDB Enterprise Package

SQL Standard

In the enterprise package, Raima supports the full INCITS/ISO/IEC 9075-2:2011 [2012] SQL standard.

Raima complies to the rules and definitions stated within that standard for the SQL support.

SQL Array

RaimaDB allows columns of a table to be defined as one-dimensional bounded arrays. Arrays of any

built-in base type can be created but arrays of domains are not yet supported.

The ARRAY type allows other types to have multiple values within a single column of a table. For

example, R-tree coordinates for a two-dimensional map would be stored in a column with an array

dimension of 4 as shown below:

CREATE TABLE pointsofinterest

(

location DOUBLE ARRAY[4] KEY USING R_TREE NOT NULL,

city CHAR(29) DEFAULT "" KEY NOT NULL, state CHAR(2) DEFAULT "" NOT NULL,

zip INT32 DEFAULT 0 KEY NOT NULL,

tz INT32 DEFAULT 0 NOT NULL);

23

SQL Unions

RaimaDB supports the SQL UNION operator. This allows for the user to combine the result set of

two or more SQL SELECT statements where each SELECT statement has the same number of

columns of a similar data type and same ordering of columns. The syntax is as follows:

SELECT column_name(s) FROM table1

UNION

SELECT column_name(s) FROM table2

SQL Inner and Outer joins

Raima supports inner, left outer, right outer and full outer joins. Joins allow for the user to select

rows that either have matching values in both tables or partial matches in either table. An inner join

will only return rows that have matching values in both of the tables specified. A left outer join will

return all rows in the first table along with matching rows in the second table. A right outer join will

return all the rows in the second table along with matching rows in the first table. The result is a

NULL column if there is no match. A full outer join will return all rows in both tables with NULL

where there are no matches.

SQL Scrollable cursors

Raima now supports SQL scrollable cursors. A user can retrieve a data set with a SQL query and

navigate in real time that data set forwards or backwards with the result set.

24

SQL Triggers

A SQL trigger is a procedure associated with a table that is executed whenever that table is modified

by an insert, update or delete statement or alternatively by a call to the RaimaDB Core Cursor API

function that inserts, updates or deletes a row from a database. Triggers are specified using SQL and

conform to the SQL Standard.

The syntax for a create trigger statement is shown below:

create trigger students.validate_enrollment before insert on

enrollment referencing new row as new_enrollment for each row begin atomic

if new_enrollment.current_grade not between 0.0 and 4.0 then

signal sqlcode eCHECK set message_text = “Current Grade must be >= 0.0 and <= 4.0”;

else

set new_enrollment.class = ucase(new_enrollment.class); end if; end;

This trigger validates that the inserted student’s grade is between a 0.0 and a 4.0. If the value is not

within that range, then an error Check clause violation is returned. If a valid insert is made, then the

class value is converted to uppercase in the case that it is not.

SQL PL

The RaimaDB SQL PL is a programming language for use in RaimaDB SQL stored routines

(procedure or function), based on the computationally complete ANSI/ISO SQL Persistent Stored

Modules specification. The language is block structured with the ability to declare variables that

conform to the usual scoping rules with an assignment statement so that values can be assigned to

them. Control flow constructs like if-elseif-else, case statements and a variety of loop control

constructs including while, repeat-until, and for loop statements are available.

Also provided is the ability to declare cursors allowing rows from a select statement to be fetched

into locally declared variables allowing the result column values to be checked and manipulated

within the stored routine. Exception handling allows handlers to be coded for specific or classes of

errors or statuses returned from execution of an SQL statement. In addition, it is also possible to

define a user condition and exception handler and for the program to signal its own, special-

purpose exceptions.

Stored procedures are executed using the SQL call statement.

25

A procedure named add_enrollment is shown below. This could be used to simplify the process of

adding students, classes, and the class enrollment to the database. create procedure

add_enrollment(cl_id

create procedure add_enrollment(cl_id char, cl_name char, st_name char)

modifies sql data begin atomic

declare id, name char(35); declare cl_cur cursor for select class_id from class where class_id = cl_id;

declare st_cur cursor for

select student_name from student where student_name = st_name; open cl_cur; fetch cl_cur into id;

if not found then

insert into class values cl_id, cl_name; end if; close cl_cur;

open st_cur;

fetch st_cur into name; if not found then

insert into student values st_name; end if; close st_cur;

insert into enrollment(begin_date, student_status, my_students, my_classes)

values current_date(), "enrolled", cl_id, st_name; end;

This procedure uses two variables, named id and name, which are used to store results from two

cursors, cl_cur and st_cur. The cursors select data from the existing tables to determine if the

student or class already exists. For those that don’t yet exist, a new row is inserted. A new

enrollment row is created with default values for the begin_date (today) and student_status

(“enrolled”) which can be updated later.

The following sequence of SQL statements will populate the database to contain the rows shown in

Figure 4 above.

call add_enrollment("MATH01", "Intro to Algebra", "Joe");

update enrollment

set end_date="2015-12-20", student_status="active", current_grade=3.1 where my_students="MATH01" and my_classes="Joe"; call

add_enrollment("SOFT03", "Advanced Java", "Joe");

update enrollment

set begin_date="2016-01-04", end_date="2015-03-31" where my_students="SOFT03" and my_classes="Joe"; call

add_enrollment("MATH01", "Intro to Algebra", "Sarah");

update enrollment

set end_date="2015-12-20", student_status="active", current_grade=3.2 where my_students="MATH01" and my_classes="Sarah"; call

add_enrollment("HIST02", "World History", "Sarah");

update enrollment

set begin_date="2015-04-01", end_date="2015-06-16", student_status="passed", current_grade=3.5 where my_students="HIST02" and

my_classes="Sarah"; call add_enrollment("SOFT03", "Advanced Java", "Henry"); update enrollment

set end_date="2015-12-20", student_status="active", current_grade=2.6 where my_students="SOFT03" and my_classes="Henry";

Note that this procedure has chosen to use some default values (current date for begin_date, and

“enrolled” for student_status). These values could also have been provided as procedure

parameters. Instead, the SQL statements will update the non-default values following the procedure.

26

REST API

With RaimaDB 15.0, Raima introduced an easy to use REST API interface. With this interface, the

developer can access any

Raima data through the use of HTTP Create, Retrieve, Update and Delete (CRUD) operations. Two

types of interfaces are available to the users: an administrative interface and a database one.

Rdmadmin

The rdmadmin interface allows the user to retrieve the following information about the RaimaDB

subsystem:

● Get a list of databases available to the TFS

● Get information about the TFS memory usage

● Get information about the TFS disk usage

● Get the TFS version information

● Get TFS configuration options

● Get a list of database users

It is accessible with the following URL syntax:

http://hostname:port/rdmadmin/?list=request[options]

where request is any of the following options:

● databases

● disk

● memory

● options

● user

● version

Database

The database interface will allow the user to Create, Retrieve, Update and Delete (CRUD) data in a

specific RaimaDB in JSON format. The supported actions are:

● Retrieve a list of the tables in a database

● Retrieve a list of the columns for a table in a database

● Retrieve a list of the keys for a table in a database

● Retrieve a list of the reference for a table in a database

● Retrieve a list of rows in a table ordered by rowid

● Retrieve a list of rows in a table ordered by a specified key

27

● Insert a new row into a table

● Update a row in a table

● Delete a row in a table

This is done with the following URL syntax:

http://hostname:port/rdm/dbname/?list=request[options]

where request is any of the following options:

● tables

● info

● rows

Insertion of data is done through an HTTP POST command with the data in a JSON format. An

example syntax is as follows:

curl -X "POST" "http://localhost:21553/rdm/bicycle_db/MANUFACTURER" -i -H 'Content-Type: application/json' -d $'{ "NAME":

"Trek Bicycle Corporation", "state": "WI"}'

Rest Admin GUI

RaimaDB includes a bundled webapp to allow for quick and easy administration of the database.

Figure 6: Administrative GUI

This webapp will allow the end user to quickly see engine status such as: memory usage, database

size, users connected and engine configuration. It also includes a database browser for quick

browsing of the contents of a database or easy manipulation/deletion of individual row data.

28

Raima Performance Features

Raima’s Snapshot Mode

RaimaDB allow an application to perform repeatable read operations on a database without

blocking other readers and writers through the use of database snapshots. The user would start a

transaction with the core API call:

rdm_dbStartSnapshot();

This will generate a static view of the database at the time the snapshot was created. Any changes

made to the database will not be visible until the snapshot is released but this will allow for writes to

continue as a reader can read from the snapshot. Once the user is done with the snapshot, it can be

released with a call to:

rdm_dbEnd(..);

In-memory Database Operation

Figure 7 shows a very simplified view of the in-memory database operation. Loading a database is

optional, as is persisting the database.

Figure 7: In-memory Database Persistence

29

Earlier versions or RaimaDB implemented in-memory databases by emulating a file system in

memory. This allowed the runtime library functionality to remain agnostic of the storage media, but

didn’t take advantage of the efficiencies that can be gained by organizing data in such a way that

facilitates fast in-memory lookups and modifications. When data is created or loaded into the

RaimaDB in-memory format, it is in an “expanded” form, very different from the ondisk form that is

flattened and compressed. The runtime library maintains a cache of data that it has created or read

from the TFS. The in-memory format is very similar to the runtime cache, and the runtime functions

recognize the structures from either their own cache or the in-memory database. For this reason,

when an application links directly to the TFS functions (the “embed” configuration), the runtime

library may directly refer to objects in the in memory database. Figure 8 shows an expansion of

Figure 7 where the database is in-memory.

Figure 8: Single-Process, Multiple Threads Configuration

Figure 8 depicts multiple runtime libraries and a TFS modules, but in fact there is a single instance of

all the reentrant code that is shared among all the threads. Each thread has its own private cache

and a private thread cache of the database objects. However, in this configuration - Single Process,

Multiple Thread - the in-memory contents are referenced directly from all of the threads. Direct

reference to a database object is possible when the object is not modified. Modified objects are

stored strictly in the private caches until they are committed.

30

This optimization means that threads performing queries will not need to read objects into their

private caches. In a multi-user configuration (“remote”), this optimization is not possible because the

memory storing the database is contained in another process, or even another computer. For this

reason, Raima recommends this Single Process, Multiple Thread configuration for high-performance

requirements

Shared Memory Transport

Memory is used in a different form for optimization of inter-process communication. When the

“remote” configuration is used, and when the connecting applications are running on the same

computer as rdm-tfs, the communications between the processes is dramatically accelerated by

using shared memory rather than TCP/IP sessions. The shared memory transport is used by default

when the two sides of the connection are running on the same computer. One rdm-tfs process may

be connected to both local and remote runtimes, and it will use shared memory and TCP/IP

concurrently in order to communicate most efficiently with its clients.

Utility Programs

The RaimaDB SDK comes with a number of command-line utilities that allow the programmer to

define, configure and manipulate databases. This section briefly discusses the utilities that will be

used most often. The easiest way to use any of these utilities is to put the RaimaDB SDK bin

directory in your path.

rdm-sql

rdm-sql is an SQL utility with support for interactive and non-interactive use. When used

interactively, rdm-sql allows you to execute SQL statements and view result sets. When used non-

interactively (called “batch mode”), it processes the SQL statements as well as its interactive

commands (described later) stored in an input file or a redirection of standard input.

All of the functionality of rdm-sql is available to the C/C++ programmer through the ODBC API.

To use it interactively, simply issue the command “rdm-sql” from a command prompt. It will have

access to all databases stored in a "document root" which by default is the current directory.

To use it in batch mode, provide an input file on the command line:

rdm-sql input_file

Command-line help is provided with the -h option (“rdm-sql -h”). Once running the utility, interface

commands help is available

with a ‘?’.

31

Here is a simple example:

Commonly used interactive commands include “.r filename” to read a set of commands from a file,

and “.q” to exit the utility. rdm-create rdm-create is a command-line utility that creates an RaimaDB

database from a database definition file (.sdl).

The database will not be populated with data. The database will be created in the "document root"

which is current directory by default.

32

The following example creates the same “Hello” database as above. Note that the database name is

taken from the name of the .sdl file. No “create database” statement is issued or allowed.

rdm-compile rdm-compile is a command-line utility that compiles a database definition into a

platform-agnostic (JSON) catalog file. It can optionally generate C and C++ source and header files

that can be included in an application.

Since the catalog file is created by other utilities such as rdm-sql or rdm-create, it is not normally

necessary to use this one.

However with projects coded in C/C++, this utility creates source files not otherwise available from

the SDK.

A common scenario when developing C/C++ applications is to define the DDL, compile it, then use

the “dbname_structs.h” file in the C/C++ files for compilation. Note that this form of application

programming will not adjust automatically for dynamic DDL changes, because the row structures

defined in the “dbname_structs.h” file is fixed until the source file is recompiled.

rdm-tfs

The default TFS configuration (see TFS Configurations above) is "hybrid", where databases may be

opened locally and are accessed by TFS functions run within the same process, or they may be

opened remotely and are accessed by remote TFS functions. This default configuration supports

multiple threads in one process.

33

Remote TFS functions reside in the rdm-tfs process, and they are called through a RPC (remote

procedure call) mechanism built into the RaimaDB runtime library.

It is possible to connect to an rdm-tfs on a computer other than the one executing the application.

The rdm-tfs process is located by forming a URI containing the domain name of the computer it is

running on. By default, the RaimaDB runtime locates a rdm-tfs process on the local machine. The

following example shows local machine access.

Step one is to spawn the rdm-tfs process, then two rdm-sql processes. On Windows the 'start'

command is used:

Note that the -C argument (or --connect for better description), “tfs:///” assumes default values to

identify the local rdm-tfs process. Fully spelled out, it would be “tfs://localhost:21553/.

But the “-C tfs:///” command line argument tells rdm-sql to use the separate rdm-tfs process instead

of the embedded one.

Next we will define a simple database just as we did above:

34

From the second rdm-sql, we can open the database and see the data. We can also add data.

Now the first rdm-sql is able to see the new data.

From here, it is easy to experiment with multi-user behavior. For example, one rdm-sql can insert

rows, but if the second rdmsql queries the database before the rows are committed, they will not be

shown. Immediately after they are committed, they become visible.

35

Security Through Encryption

The RaimaDB objects are stored in the cache of the runtime library in an unencrypted form for use

by the database functions. However, if the database contains sensitive information, RaimaDB allows

the objects to be encrypted when they are written from the cache to the files. RaimaDB supports the

Rijndael/AES algorithm with 128, 192 or 256 bit keys. A simple default encryption uses XOR

operations.

When a runtime requests a database object, it will receive it in the encrypted form and must have

the key to decrypt it when it places it into the local cache. During the commit of a transaction,

objects sent over the network will be encrypted, and if the TFS is storing those objects, they remain

encrypted on the disk file.

Third Party Replication

RaimaDB now supports replication both to and from a RaimaDB system by use of the third party

replication system SymmetricDS (https://www.symmetricds.org/ and http://www.jumpmind.com/).

Symmetric is a JAVA based asynchronous replication based system with support for multiple

database management systems. The supported databases range from Oracle, Microsoft SQL Server,

Amazon Web Services, Microsoft Azure, MySQL, SQLite, IBM DB2, etc and now RaimaDB. RaimaDB

will support data filtering and transformation during the process as well.

Interoperability

Standard interfaces allow the outside world (that is, tools that can interface to a variety of data

sources) to view and manipulate data in a RaimaDB. While most application systems based on

RaimaDB are “closed,” there are many advantages to using languages (Java, etc.) and tools (Excel,

Crystal Reports, etc.) to access the data used by the system. Raima has chosen ODBC and JDBC as

standard interfaces. ODBC is also implemented as a C API, meaning that C/C++ programmers can

write programs that access the database through ODBC functions. This API may be used within any

environment. On Windows, the ODBC driver has been provided for access from third party tools.

JDBC permits connection to a RaimaDB using the standard methods.

Near Future
In the near future Raima will release RaimaDB with the added functionality of an optimized OCC

locking system and further SQL improvements. Raima will also announce replication from the Raima

to Raima directly from the edge.

36

Conclusion

The goal of this paper is to provide a technical description of the RaimaDB 16.0 product, sufficient

for an evaluation and decision making process. Of course, there are many more details available for

the evaluation process, but they may take hours or days longer to obtain. The best evaluation is

through downloading and running the full product.

As a highly technical product with many shapes and sizes, many of Raima’s customers benefit from a

consultative analysis of their database design or coding process. This can result in significant

optimizations and be instructive in the use of Raima’s products.

Quick Start

This section assumes that you have downloaded and installed RaimaDB for your Windows, Linux or

Unix system. While other operating system platforms are available for test, it is recommended that

you become familiar with the product on one of these desktop systems.

This section will use Windows conventions in the examples, but the translation to Linux or Unix is

straightforward. Another assumption is that you have installed RaimaDB in a home directory called

C:\Raima\RDM\16.0. The following steps will allow to you create a simple database with SQL which

will allow you to follow the remaining examples in this paper.

Environmental setup

● Open a command prompt.

● If the RaimaDB installation home directory is C:\Raima\RDM\16.0, include the \bin directory

in your path:

C:\> PATH=C:\Raima\RDM\16.0\bin;%PATH%

● Create or use a directory that will contain RaimaDB’s, for example:

C:\> mkdir \RaimaDB C:\> cd

\RaimaDB

● Make sure the rdm-sql utility is able to run. Check the path if this fails:

C:\RaimaDB> rdm-sql --help

Raima Database Manager Interactive SQL Utility (etc.)

37

Create the database

● Create an SQL Definition Language file containing the following contents. Name it

students.sdl.

create table class (

class_id char(6) primary key,

class_name char(29)

);

create table student (

student_name char(35) primary key

);

create table enrollment (begin_date date,

end_date date, student_status char(9),

current_grade float,

my_students char(6) references class, my_classes char(35)

references student);

● Run the rdm-sql utility from the example directory. This directory will be referred to as the

document root. The “.r” command reads the file contents and submits them as if they had

been typed interactively. You may optionally enter the SQL DDL by hand:

C:\RaimaDB> rdm-sql

Enter ? for list of interface command.

rdm-sql: create database students; rdm-sql: .r students.sdl

students.sdl(1): create table class (

students.sdl(2): class_id char(6) primary key, students.sdl(3):

class_name char(29) students.sdl(4):); students.sdl(5): students.sdl(6):

create table student (

students.sdl(7): student_name char(35) primary key students.sdl(8):);

students.sdl(9): students.sdl(10): create table enrollment (students.sdl(11):

begin_date date, students.sdl(12): end_date date, students.sdl(13):

student_status char(9), students.sdl(14): current_grade float,

students.sdl(15): my_students char(6) references class, students.sdl(16):

my_classes char(35) references student students.sdl(17):); rdm-sql: commit; rdmsql:

.q

Note that a new subdirectory will exist in the document root named students.rdm. This directory contains

the database files.

Populate the database

● Create an SQL file (say, populate.sql) containing the following contents:

insert into class values "MATH01", "Intro to Algegra"; insert into class values

"SOFT03", "Advanced Java"; insert into class values "HIST02", "World History";

insert into student values "Joe"; insert into student values

38

"Sarah"; insert into student values "Henry";

insert into enrollment values current_date(),

"2015-12-20", "active", 3.1, "MATH01", "Joe"; insert into enrollment values

"2016-01-04",

"2015-03-31", "enrolled", , "SOFT03", "Joe"; insert into enrollment values

current_date(),

"2015-12-20", "active", 3.2, "MATH01", "Sarah";

insert into enrollment values "2015-04-01",

"2015-06-16", "passed", 3.5, "HIST02", "Sarah";

insert into enrollment values current_date(),

"2015-12-20", "active", 2.6, "SOFT03", "Henry";

● With the rdm-sql utility, read the SQL statements into the database:

C:\RaimaDB> rdm-sql

Enter ? for list of interface commands.

rdm-sql: use students;

rdm-sql: .r populate.sql

populate.sql(1): insert into class values "MATH01", "Intro to Algegra";

*** 1 row(s) inserted

populate.sql(2): insert into class values "SOFT03", "Advanced Java";

*** 1 row(s) inserted

populate.sql(3): insert into class values "HIST02", "World History";

*** 1 row(s) inserted

populate.sql(4): insert into student values "Joe";

*** 1 row(s) inserted

populate.sql(5): insert into student values "Sarah";

*** 1 row(s) inserted

populate.sql(6): insert into student values "Henry";

*** 1 row(s) inserted

populate.sql(7): insert into enrollment values current_date(), populate.sql(8): "2015-12-20", "active", 3.1,

"MATH01", "Joe";

*** 1 row(s) inserted

populate.sql(9): insert into enrollment values "2016-01-04",

populate.sql(10): "2015-03-31", "enrolled", , "SOFT03", "Joe";

*** 1 row(s) inserted

populate.sql(11): insert into enrollment values current_date(), populate.sql(12): "2015-12-20", "active",

3.2, "MATH01", "Sarah";

*** 1 row(s) inserted

populate.sql(13): insert into enrollment values "2015-04-01",

populate.sql(14): "2015-06-16", "passed", 3.5, "HIST02", "Sarah";

*** 1 row(s) inserted

populate.sql(15): insert into enrollment values current_date(), populate.sql(16): "2015-12-20", "active",

2.6, "SOFT03", "Henry";

*** 1 row(s) inserted rdm-sql:

commit; rdm-sql: .q

Note that the “.r” (read file contents) command is not necessary because these statements may be entered

interactively. Here we use a file because typing errors can be corrected and re-entered.

39

Query the database

● Again, with the rdm-sql utility, open and query the three tables:

C:\RaimaDB> rdm-sql

Enter ? for list of interface commands.

rdm-sql: use students; rdm-sql: select * from

class;

class_id| class_name

--------+------------------------------

HIST02 | World History

MATH01 | Intro to Algegra

SOFT03 | Advanced Java *** 3 row(s)

returned

rdm-sql: select * from student;

student_name

Henry

Joe

Sarah

*** 3 row(s) returned

rdm-sql: select * from enrollment;

begin_date| end_date | student_ | current_ | my_students| my_classes

| | status | grade |

----------+-----------+-----------+----------+------------+-----------

2016-01-05| 2015-12-20| active | 3.1| MATH01 | Joe

2016-01-04| 2015-03-31| enrolled | *NULL*| SOFT03 | Joe

2016-01-05| 2015-12-20| active | 3.2| MATH01 | Sarah

2015- 04-01| 2015-06-16| passed | 3.5| HIST02 | Sarah

2016- 01-05| 2015-12-20| active | 2.6| SOFT03 | Henry

*** 5 row(s) returned rdm-sql: .q

● Experiment

40

Want to know more?

Please visit our website for the latest news, product downloads and documentation:

www.raima.com

Headquarters: 3214 W. McGraw St., Suite #212, Seattle, WA 98199, USA T: +1 206 748 5300

Europe: Forneburingen 33, Oslo, Norway : +47 97075600

http://www.raima.com/

