Contents

RaimaAI: The World's First Autonomous Functional Safety (FuSa) Engineer	3
Executive Summary	3
Core Capabilities	3
1. Automated Test Generation	3
2. Coverage Gap Analysis and Completion	5
3. Multi-Domain Traceability	5
4. Static Analysis Automation	5
5. Git Workflow Integration	5
Automated Documentation Generation	5
1. Control Flow Analysis (CFA)	5
2. Data Flow Analysis (DFA)	5
3. Architecture Analysis	5
Safety Analysis Automation	6
1. HARA (Hazard Analysis and Risk Assessment)	6
2. FMEA (Failure Mode and Effects Analysis)	6
3. Requirements and Design Documentation	6
Time Zero Developer Experience	9
VSCode Integration	9
Workflow Benefits	9
Certification Support	9
DO-178C Level A Compliance	9
ISO 26262 ASIL D Compliance	11
Implementation Architecture	11
Key Differentiators	11
1. Autonomous Operation	11
2. Comprehensive Coverage	12
3. Developer-Centric Design	12
4. Certification-Ready Output	12
ROI and Benefits	12
Time Savings	12
Quality Improvements	
Cost Reductions	12
Future Roadmap	12
Phase 1: Enhanced AI Capabilities	12
Phase 2: Extended Standard Support	13
Phase 3: Full Lifecycle Automation	13

Conclusion																							1:	3

RaimaAI: The World's First Autonomous Functional Safety (FuSa) Engineer

Executive Summary

RaimaAI represents a paradigm shift in functional safety engineering, providing autonomous capabilities that accelerate safety-critical software development while ensuring compliance with the most stringent industry standards including DO-178C Level A and ISO 26262 ASIL D. By leveraging advanced AI technologies, RaimaAI automates the entire functional safety lifecycle from requirements to certification.

Core Capabilities

1. Automated Test Generation

Unit Test Generation

- 100% MC/DC Coverage: Automatically generates test cases achieving Modified Condition/Decision Coverage
- Boundary Value Analysis: Identifies edge cases and corner conditions
- Equivalence Partitioning: Optimizes test suite efficiency
- State Machine Testing: Covers all state transitions and invalid state handling

Integration Test Generation

- Interface Testing: Validates all module interactions
- Data Flow Testing: Ensures proper data propagation across components
- Timing Analysis: Verifies real-time constraints
- Fault Injection: Tests error handling and recovery mechanisms

 ${\bf Figure~1:_4 Diagram}$

Figure 2: Diagram

- 2. Coverage Gap Analysis and Completion
- 3. Multi-Domain Traceability
- 4. Static Analysis Automation

MISRA 2025 Compliance

- Real-time code analysis during development
- Automated fix suggestions
- Deviation documentation
- Rule mapping to safety requirements

AUTOSAR C++14 Compliance

- Architecture conformance checking
- Coding guideline enforcement
- Memory safety validation
- Concurrency analysis

5. Git Workflow Integration

Automated Documentation Generation

1. Control Flow Analysis (CFA)

RaimaAI automatically: - Generates control flow graphs for all functions - Identifies cyclomatic complexity - Detects unreachable code - Validates decision coverage

2. Data Flow Analysis (DFA)

- Variable lifecycle tracking
- Use-definition chain analysis
- Data dependency graphs
- Information flow security analysis

3. Architecture Analysis

Architecture Metrics

- Cohesion: Measures module focus and single responsibility
- Coupling: Analyzes inter-module dependencies
- Connectedness: Evaluates component relationships

Figure 3: Diagram

• Stability: Assesses change impact and maintainability

Safety Analysis Automation

- 1. HARA (Hazard Analysis and Risk Assessment)
- 2. FMEA (Failure Mode and Effects Analysis)

Automated generation includes: - Component failure modes - Failure effects and causes - Detection methods - Risk Priority Numbers (RPN) - Mitigation strategies

3. Requirements and Design Documentation

System Requirements Specification (SRS)

- Functional requirements extraction
- Non-functional requirements identification
- Safety requirements derivation
- Traceability to hazards

Software Design Documentation (SDD)

- High-level architecture
- Module specifications

 ${\bf Figure~4:_7 Diagram}$

Figure 5: Diagram

Figure 6: Diagram

- Interface definitions
- Design rationale with safety considerations

Time Zero Developer Experience

VSCode Integration

Workflow Benefits

- 1. Immediate Feedback: Issues detected as code is written
- 2. Contextual Fixes: AI understands code intent and suggests appropriate fixes
- 3. Learning System: Improves suggestions based on accepted/rejected fixes
- 4. Seamless Integration: Works within existing development workflows

Certification Support

DO-178C Level A Compliance

- Automated Evidence Generation
 - Test procedures and results
 - Coverage analysis reports
 - Traceability matrices
 - Review checklists

• Verification Activities

- Requirements-based testing
- Structural coverage analysis
- Source code to object code analysis
- Timing and stack analysis

Figure 7: Diagram

ISO 26262 ASIL D Compliance

• Work Product Generation

- Software safety requirements
- Software architectural design
- Unit/Integration test specifications
- Verification reports

• Tool Qualification

- Tool Confidence Level (TCL) assessment
- Validation suite execution
- Tool error detection capabilities
- Qualification documentation

Implementation Architecture

Figure 8: Diagram

Key Differentiators

1. Autonomous Operation

- Minimal human intervention required
- Self-improving through machine learning

• Proactive issue detection and resolution

2. Comprehensive Coverage

- Entire safety lifecycle support
- Multiple standard compliance
- All documentation automated

3. Developer-Centric Design

- Integrates into existing workflows
- · Reduces cognitive load
- Accelerates development cycles

4. Certification-Ready Output

- · Pre-validated against standards
- Auditor-friendly documentation
- Complete evidence packages

ROI and Benefits

- Automated threat modeling
- Predictive defect analysis

Phase 2: Extended Standard Support

- IEC 61508 SIL 3/4
- EN 50128 SIL 3/4
- IEC 62304 Class C

Phase 3: Full Lifecycle Automation

- Requirements generation from specifications
- Automated safety case construction
- Continuous certification maintenance

Conclusion

RaimaAI transforms functional safety engineering from a manual, error-prone process into an automated, reliable, and efficient workflow. By combining cutting-edge AI technology with deep domain expertise in safety-critical systems, RaimaAI enables organizations to achieve certification faster, maintain compliance continuously, and deliver safer products to market.

RaimaAI: Automating Safety, Accelerating Innovation