

P a g e | 1

TECHNICAL WHITE PAPER

COTS Embedded Database
Solving Dynamic Points-of-
Interest
Abstract

In navigation devices of today the This article looks at how commercial off the shelf (COTS) database solutions can

be utilized to solve the dynamic point of interest problem.

P a g e | 2

TECHNICAL WHITE PAPER

Contents
1 Introduction .. 3

2 Commercial off the Shelf (COTS) Solution .. 3

3 Implementation .. 5

4 Conclusion ... 8

5 Complete Source ... 8

6 References .. 9

P a g e | 3

TECHNICAL WHITE PAPER

1 INTRODUCTION

Navigation systems found in cars and handheld units provide an efficient and easy way to lookup points of interest in

a city, find the best route to a user’s destination and provide other regionally-based operations by efficiently managing

map points. A typical query for these devices is for example locating the nearest Italian restaurant based on the

current position of the vehicle. Proprietary data sets and indexing algorithms are used to solve these types of queries,

but a major drawback with most of these devices is that they are ‘read only’ to prevent users from making changes
and corrupting the dataset. Updates to datasets must be done in batch mode, and the complete dataset and indexes

must be rebuilt on a regular basis because new businesses are constantly cropping up and new roads and buildings

are being constructed. Vendors are therefore unable to offer customers localized datasets which could be sold at gas

stations and other venues, nor can users make route calculations on the fly to avoid ad-hoc obstacles like accidents.

2 COMMERCIAL OFF THE SHELF (COTS) SOLUTION

COTS embedded databases are designed to manage changing datasets and indexes without the chance of data

corruption, but they have a different problem - they don’t support two dimensional indexes needed to efficiently
manage points-of-interest. If we can find a solution where COTS engines could be used, navigation vendors would be

able to design more robust devices and provide new services to their customers.

The problem stems from the fact that a point of interest must be indexed based on both its longitude and latitude

value where neither of the two values is favored. By default a one dimensional index will favor one of the two values

making a range query very inefficient, which is the main reason why vendors create their own proprietary solutions.

Figure 1

Figure 1 is a longitude, latitude grid of all points in a system where both the longitude and latitude are coded as 4 bit

values. In real world applications these values would be 32 bit but for the simplicity of describing both the problem

and solution, the maps in this article will be based on 4 bit data types.

P a g e | 4

TECHNICAL WHITE PAPER

A one dimensional index, such as a B-Tree, will only provide an efficient longitude/latitude index in one direction. In

the figure, the longitude values are illustrated as the most significant information so the index will only have vertical

efficiency. Think of the value in each cell as what the index sees, and the index is sorted from low to high.

If we add a region query based on the bounding box between (5, 5) to (9, 8) this would translate to a range scan of

the index between the two values. Figure 2 illustrates exactly that.

 Figure 2

Not only are the yellow points returned to the application but also all the false gray points that are clearly outside the

bounding box. This inefficiency is the major reason for navigational vendors implementing proprietary solutions based

on two dimensional indexing algorithms like R-Tree or any of its cousins. By making the proprietary implementation

read only, the vendors don’t need to implement transactional safety or concurrency control to avoid corruption or
allow multi-threaded application access to the data.

P a g e | 5

TECHNICAL WHITE PAPER

3 IMPLEMENTATION

This article will describe a solution to the two dimensional problem by mapping it down to one dimension allowing us

to leverage all the investments done in the embedded database space. This not only allows the vendors to efficiently

query these points-of- interest but also allows them to dynamically add other one dimensional information to the

query, like type (gas station, restaurant, etc), which can’t be solved with a two dimensional index system.

If you look at the previous figure, the one dimensional index is inefficient since its most significant piece of information

is taken from the Longitude values and the second most significant from the latitude, thus creating the undesired

vertical efficiency. If you translate the points into the bit pattern used by the indexing system it will look like this:

Figure 3

The four most significant bits (x4x3x2x4) stem from the Longitude value and the 4 second most significant bits

(y4y3y2y4) stem from the Latitude. Let’s introduce the Z-value
1
, which is made up of interleaving the most significant

bits from both dimensions, resulting in values on the form (y4x4y3x3y2x2y1x1). If our one dimensional index uses this bit

pattern as its index values we’ll be indexing something where the most significant information from both dimensions is

taken into consideration. Figure 4 shows the pattern.

1
 Morton, G. M. (1966), A computer Oriented Geodetic Data Base; and a New Technique in File

Sequencing, Technical Report, Ottawa, Canada: IBM Ltd.

P a g e | 6

TECHNICAL WHITE PAPER

Figure 4

For illustration purposes each cell has both the binary and decimal representation of the Z-Values. Instead of having

vertical efficiency we’ve now managed to introduce square like efficiency, but we still can’t take any random region
and expect an efficient result. If our bounding box happened to be from (0, 0) to (3, 3) or (6, 6) to (7, 7) we’d be
extremely efficient since any query will be mapped to a range query and all points in our region have contiguous

increasing value. E.g. the (0, 0) to (3, 3) bounding box resulting in a range query from 0 to 15.

Let’s look at the range query from (5, 5) to (9, 8) that we were initially working on, How would that look?

P a g e | 7

TECHNICAL WHITE PAPER

Figure 5

A straight forward range query of this region would return a whole lot of false points, (the grey points), which make

this just as inefficient as the previous discussion. So the question is, can we optimize our query? The answer is yes.

Since our points are now organized in squares we can take the region and break it down into multiple squares of

contiguous increasing index values. You’ll see from the rest of this discussion that the proposed algorithm for
calculating these squares will result in our yellow region being broken into 5 smaller squares, scanned separately,

optimizing out most of the false points.

We’ll start out by doing a range query from 51 to 193, which are our bounding box values. As we scan we’ll decide to
calculate a region division if 3 false points are reported. We allow up to 3 false points to avoid too many division

calculations. In our case the first division calculation will take place when the last reported point is above 63 and

lower than 98 given that there are more than 3 points to report in this interval.

00110011

51

00110110

54

00110111

55

01100010

98

01100011

99

00111001

57

00111100

60

00111101

61

01101000

104

01101001

105

00111011

59

00111110

62

00111111

63

01101010

106

01101011

107

10010001

145

10010100

148

10010101

149

11000000

192

11000001

193

P a g e | 8

TECHNICAL WHITE PAPER

To illustrate the division calculation we’ve broken out the bounding box values in binary form:

51 = 00110011 = (0101,0101), and

193 = 11000001 = (1001,1000)

The first thing we do is look at the Z value and determine the first significant bit that differs based on the values; this

will determine whether we’re looking at a vertical or a horizontal division. With the above numbers the identified bit is
z8 which translates to the y4 bit. Y bits will result in a horizontal split, x bits vertical.

Since we’ve identified a vertical split we know that the upper x boundary can be inherited from the 193 value and the
lower x boundary from the 51. The two points we want to identify in this division (we’ll call them LitMax and BigMin)
are 107 and 145 which are the highest number in the upper square and lowest number in the bottom square divided

by the red line. What we don’t know is the y value just above and below this division line. LitMax’s y value can be
calculated as ‘all common most significant bits’ from the bounding box y values followed by a 0 and then 1’s, and the
BigMin’s y value would be ‘all common most significant bits’ followed by 1 and then 0’s.

So in our case we take the y’s from 51 and 193 and look at the bit patterns:

51’s y = 0101
193’2 y = 1000
This gives us the LitMax y value to be 0111 (no common bits), and BigMin’s y value 1000 resulting in the LitMax point
being (1001,0111) and BigMin’s point being (0101,1000) interleaved resulting in 01101011 = 107 and 10010001 =
145.

Now that the calculation is done, our initial bounding box (5,5) to (9,8) is split in two - (5,5) to (9,7) and (5,8) to (9,8) .

Since our last reported point was between 63 and 98 (less than LitMax) there is a chance of finding more valid points

in the first region so we do a recursive call into the division algorithm with the new bounding box values, 51 to 107.

51 = 00110011 = (0101,0101), and

107 = 01101011 = (1001,0111)

Identifying that x4 is the first significant bit that changes, means a vertical split where we inherit the y values from the

bounding box extent. The LitMax and BigMin values are now computed based on the x values in the same way as

our first calculation, resulting in the LitMax point being (0111,0111) and BigMin point being (1000,0101) interleaved

00111111 = 63 and 01100010 = 98 dividing along the blue line. We still know that the last valid point was between 63

and 98, so we can start a regular scan from 98 and 107 which is our new bounding box. The new scan will result in

new splits but at one point we’ll return to the last reported value being larger than 107 and we’ll start a regular scan
from the BigMin calculated in our first split.

With our original bounding box we’ll end up with 4 splits and 4 scans with a maximum of (4-1) * 3 false points

reported.

There are another couple of observations to make: first the z value is a loss less representation of the x and y, so by

storing z there is no need to store the x and y value. Another observation is that z is now just indexed as a one

dimensional value; pre-pending it with any other one dimensional value would allow for even more specialized

queries. Say you pre-pend it with type information than you can efficiently index any gas stations, any restaurants or

any other type that you may discover at runtime without needing to ship the software with a predefined set of types.

4 CONCLUSION

To conclude the above discussion allows commercial off the shelf databases to dynamically and efficiently manage

points-of-interest data without the need for specialized indexing techniques. It also supports on-device changes of

data without the possibility of corruption.

5 COMPLETE SOURCE
Please download Raima’s RDM Embedded technology for a running example of the problem described in this article,

http://www.raima.com/developer-tools/download-table/

http://www.raima.com/developer-tools/download-table/

P a g e | 9

TECHNICAL WHITE PAPER

6 REFERENCES
Z-order (curve). (2008, July 26). In Wikipedia, The Free Encyclopedia. Retrieved 19:44, September 10, 2008, from

http://en.wikipedia.org/w/index.php?title=Z-order_(curve)&oldid=228028274

Morton, G. M. (1966), A computer Oriented Geodetic Data Base; and a New Technique in File Sequencing, Technical

Report, Ottawa, Canada: IBM Ltd.

Tropf, H. & Herzog, H. (1981), "Multidimensional Range Search in Dynamically Balanced Trees," Angewandte

Informatik 2: 71–77.

http://en.wikipedia.org/w/index.php?title=Z-order_(curve)&oldid=228028274

P a g e | 10

TECHNICAL WHITE PAPER

Want to know more?

Please call us to discuss your database needs or email us at info@raima.com. You may also visit our website for the

latest news, product downloads and documentation: www.raima.com.

Headquarter: 720 Third Avenue Suite 1100, Seattle, WA 98104, USA T: +1 206 748 5300

Europe: Stubbings House, Henley Road, Maidenhead, UK SL6 6QL T: +44 1628 826 800

Copyright Raima Inc., 2012.

mailto:info@raima.com
http://www.raima.com/

