

P a g e | 1

TECHNICAL WHITEPAPER

RDM 11 Architecture and Features
By Wayne Warren, CTO – March 2012

Abstract

RDM 11.0 is a product developed by programmers for programmers. Its packages, APIs and utilities can be

employed in countless combinations, assuming the responsibility for data collection, storage, management and

movement. Programmers using RDM 11.0 can focus on their specialty rather than worry about managing their data.

Given the variety of computing needs, a “one shape fits all” product will quickly be pushed beyond its limits. This
paper discusses RDM 11.0 as a whole, as pieces, and as solutions built from those pieces.

RDM 11.0 can be used for meaningful solutions in multiple industries, including Industrial Automation, Aerospace and

Defense, Telecommunications, and Medical. This paper is for those who want more than “what” RDM can do, but
also “how” it does it. As much as possible, this paper will just state with the facts, and leave the hype to the reader. A

basic understanding of application software development is required to fully understand these facts. Also, knowledge

of operating environments, such as Linux, Windows, Real-time/embedded operating systems, networking (both

Local- and wide-area), mobile environments, such as iOS, and computer architectures is assumed.

Prerequisites: A basic understanding of application software development.

P a g e | 2

TECHNICAL WHITEPAPER

CONTENTS
1. THE BIG PICTURE ... 3

2. STANDARD FUNCTIONALITY ... 4

2.1 Core Database Engine .. 4

2.1.1 Storage Media .. 4

2.1.2 Database Definition Language (DDL) ... 4

2.1.3 Database Functionality ... 4

2.2 Data Modeling .. 5

2.2.1 Relational Model ... 5

2.2.2 Network Model ... 5

2.3 Core DDL ... 5

2.4 SQL DDL ... 6

2.5 ACID .. 7

2.6 Runtime Library ... 7

2.7 TFS .. 8

2.8 Configurations .. 9

2.9 In-Memory Operation ... 11

2.10 Language Support ... 11

3. DATABASE UNIONS .. 11

4. Interoperability ... 13

5. Plus Functionality .. 13

5.1 Mirroring... 13

5. 2 Replication .. 14

6. Putting the Pieces Together .. 14

6.1 High Availability ... 15

6.2 High Throughput .. 16

6.3 Networking ... 17

6.4 In the Office ... 18

6.5 In the Field ... 19

7. Conclusion ... 21

P a g e | 3

TECHNICAL WHITEPAPER

1. THE BIG PICTURE
RDM is packaged by distinct environment groups: Mobile, Embedded, Desktop & Server and Enterprise Lite. Figure 1

below illustrates the complete RDM offering:

Figure 1: RDM Packages

Each environment can stand alone or interoperate with the others. A Mobile application can be developed to operate

independently of the Desktop & Server environment, or it can be created as an extension of an application already

running in the Desktop & Server environment.

Each environment group has a Standard and Plus package. The Standard Packages will satisfy most application

development needs in that environment, while the Plus Packages add the more sophisticated data movement

options.

The standard Mobile and Embedded packages allow standalone development, meaning that databases are not

shared between different computers. The Desktop & Server environment allows for basic distributed processing. With

the Plus packages, distributed processing as well as mirroring and replication are available.

With the addition of the iOS environment, we have introduced an Objective-C interface, currently available only on

Apple computers (phones, tablets, etc.). All other interfaces (C, C++, SQL, and ODBC) are available as C-callable

APIs in all packages except standard Mobile. For Windows environments, ADO.NET, JDBC, ODBC drivers are also

available.

The following discussion about RDM functionality is applicable, with minor exceptions, for all environments.

P a g e | 4

TECHNICAL WHITEPAPER

2. STANDARD FUNCTIONALITY
Digging inside each package, we find most of the technology is within the Core Database Engine. Understanding its

basic functionality is required before the optional packages can be understood.

2.1 Core Database Engine

The Core Database Engine was first released in 1984 under the name db_VISTA. In the years since then, the basic

functionality of this engine has remained intact while many additional features have been added.

2.1.1 Storage Media

An RDM database is composed of one or more computer files. Frequently, these files are stored in an operating

system’s file system, which can be using disk drives, SD RAM, SSD or main memory as the storage media. RDM

uses standard file I/O functions to access the file system.

An important issue with durable storage like disk and SD RAM is that an operating system will almost always

maintain a cache of the file contents for performance reasons. If file updates are written into the file system, they first

exist in the cache only. If the computer stops functioning before writing the cache contents to the permanent media,

not only can the updates be lost, but the files may be left in an inconsistent state. To safeguard against this, RDM

asks the operating system to “sync” a file at key moments, ensuring that the data is safe no matter when a computer
may fail. The “sync” operation (synchronize to disk) will not return control to the program until the file contents exist

on the permanent media. Any database system that guarantees the safety of data must have sync points in their

transaction handling.

RDM also has its own internal in-memory file system that allocates RAM for storing file contents. This is much faster

than permanent media storage, but is vulnerable to loss if there is a program or computer error.

2.1.2 Database Definition Language (DDL)

Database files are named in the Database Definition Language (DDL) written by the programmer (see 2.2 DATA

Modeling below). RDM defines 6 different file types for database storage:

1. Database Dictionary—also called DBD file, and ends with a “.dbd” suffix. This contains a definition of the
sizes and locations of all data stored in the other database files.

2. Data File—a data file stores records. It is typical to name a data file after the record type it stores, using a

“.dat” suffix, or to name the database and use a sequential “.dNN” suffix. Each record is stored in a slot,

which is stored in a page in a data file. For any given data file, the slot and page sizes are fixed. Normally,

one type of record is stored in a data file, but multiple record types may be stored in the same file. A page is

a unit of I/O, where everything in the page is either read from or written to the file as a unit.

3. Key File—a key file uses a b-tree indexing structure to maintain a sorted, direct-access list of keys. Like data

files, their suffixes are usually “.key” or “.kNN”. Key files also use fixed-length pages and slots.

4. Hash File—hashing is a different method used to store and look up keys. Hashing allows quicker lookups

than b-trees, but do not maintain key ordering.

5. Vardata File—variable-length strings are managed by storing a reference to the string in the data file, and

storing the string, probably in fixed-length pieces, in a vardata file.

2.1.3 Database Functionality

At the root of any database, you have a representation of your data, and operations on that data. The representation

of the data, which can also be called the data model, is the way the database’s user sees the data. Data is created,
deleted and changed in this representation through operations on the database. As discussed below, databases are

normally shared and contain valuable information, so the operations on a database must follow carefully defined

rules.

P a g e | 5

TECHNICAL WHITEPAPER

2.2 Data Modeling

2.2.1 Relational Model

The most commonly understood data model today is the relational model, where all data is defined in terms of tables

and columns. We will not define the relational model here, but will note that RDM allows a database to be defined

using SQL, (see below) the predominant relational database language. Relationships in a pure relational model are

defined by comparing column values in one table to column values in another. Indexing is a common method to

optimize the comparisons.

2.2.2 Network Model

Beneath the relational model in an RDM database is a network model, where all data is defined in terms of record

types and fields. Fields may be indexed, and record types may have set relationships between them, which are

defined as one-to-many, owner/member relationships.

Note that set relationships occupy space in the records, stored in the data files. The owner record will contain

pointers to member records. Member records will contain pointers to the owner record, plus the next and previous

members. This allows for quick navigation among the members of a set.

RDM uses the set construct to represent relational equi-joins, which will be shown in the DDL examples below. Data

in RDM is modeled by creating DDL (Database Definition Language). When DDL is compiled, a database dictionary

file (DBD, as defined above) is created.

2.3 Core DDL

Core DDL defines records and indices, and identifies the files containing them. As a simple example, the following

figure represents three record types and two sets that model the relationships between students and classes.

Figure 2: Student and Classes

P a g e | 6

TECHNICAL WHITEPAPER

To code the above data model in DDL, a textual language is used, which is shown below.

database students {

 data file “class.dat” contains class;
 data file “student.dat” contains student;

 key file “class_id.key” contains class_id;
 key file “name.key” contains name;

 record class {

 unique key char class_id[6];

 char class_name[30];

 }

 record student {

 key char name[36];

 }

 record intersect {

 int32_t begin_date;

 int32_t end_date;

 char status[10];
 int32_t current_grade;

 }

 set my_students {

 order last;

 owner class;

 member intersect;

 }

 set my_classes {

 order last;

 owner student;

 member intersect;

 }

}

Note that set relationships occupy space in the records, stored in the data files. The owner record, for example, class,

will contain pointers to member records. Member records will contain pointers to the owner record, plus the next and

previous members. This allows for quick navigation among the members of a set.

2.4 SQL DDL

If SQL is the chosen interface from the program to the database, you would start with SQL DDL. In RDM, the SQL

DDL gets translated into Core DDL, and the extra information needed only by SQL is stored in a separate catalog file

that is used together with the DBD file. To model the student and class data shown above, SQL DDL is written:

create database students;

create table class (
 class_id char(5) primary key,

 class_name char(29)

);

create table student (

 name char(35) primary key

);

create table intersect (

 begin_date integer,

 end_date integer,

 status char(9),

 current_grade integer,

 my_students char(5) references class,

 my_classes char(35) references student

);

P a g e | 7

TECHNICAL WHITEPAPER

Note that the primary key in the class record, and the references in the intersect cause RDM to create a set

relationship between the class and intersect record types at the Core DDL level, representing an equi-join.

2.5 ACID

RDM is an ACID-compliant DBMS, meaning it maintains the following properties:

Atomicity Multiple changes to a database are applied atomically, or all-or-nothing, when contained

within the same transaction.

Consistency Data relationships are made to follow rules so they always make sense.

Isolation When multiple readers or writers are interacting with the database, none will see the partially

done changes of another writer.

Durability Changes that are committed in a transaction are safe. Even if something happens to the

program or the computer’s power, the updates made during the transaction will exist

permanently in the database.

Maintaining the ACID properties is the “hard work” of a DBMS. Application programmers shouldn’t solve these
problems again. RDM uses standard methods to implement them, as will be shown below.

A key concept when viewing or updating a database is that of a transaction. Atomicity has to do with the grouping of a

set of updates as one transaction. Consistency has to do with rules such as the existence of a key in an index means

that the record containing that key field exists too. Isolation has to do with a community of users never seeing

changes done by others except as complete transactions. Durability has to do with writing to the database in a way

that causes the entire group of updates to exist or not exist after a crash and recovery.

The isolation property was enhanced starting with version 10.0 of RDM, when read-only-transactions were

introduced. Read-only-transactions are a form of Multi-Version-Concurrency-Control (MVCC), allowing readers to

view what appears to be a snapshot of a database at a moment in time, even though the database is being actively

updated. This is implemented by keeping track of the version of each page in a database. Whenever a page is

changed by a transaction, RDM keeps a copy of the version of the page needed by the reader. When the reader asks

for that page, it is presented with the correct one. This means that readers using read-only-transactions do not need

to issue locks, which would prevent updates from occurring until the reading is completed and the locks are freed. So

the isolation property is maintained without the need for locks, which significantly increases the performance of read

operations (reporting, etc.).

2.6 Runtime Library

The runtime library is linked into applications and performs database operations through the Core API, defined as a

set of C functions. It keeps a cache of database file pages in its memory. Some of those pages may have been read

from the database, others may have been created as new pages by the runtime library. The functions read or update

the contents of the pages in the cache.

Functions in the runtime library can be grouped into the following general categories:

Database Control Create or destroy databases. Open or close databases.

Transaction Control Begin, commit or abort transactions.

Locking Functions Lock records for shared reading or exclusive writing.

Record/Set Create/Delete Create or delete records, connect and disconnect records from sets.

Navigation Key lookup and scanning. Set scanning. Sequential scanning.

Read/Write Data Read or write entire record contents or individual field contents.

P a g e | 8

TECHNICAL WHITEPAPER

If an application is only reading a database, its cache will be populated with pages from data and key files. To read

pages, the application must either have the database exclusively (no other users) open, have locks on the records, or

use read-only-transactions.

If an application is updating a database, it must begin a transaction, obtain locks on the records, make the updates,

and then commit the transaction. All updates made by the application are kept in the cache until commit time. The

application’s view of the database will include the updates, although no other applications will see any of the updates.

To commit a transaction, all changed or new pages are written to a transaction log file, which is then applied in a

controlled and recoverable manner to the database files. A separate component is responsible for performing the

actual reads from the database files and safely committing the transaction log files, so that the runtime library doesn’t
actually read or write the database files directly. This is the job of the specialized Transactional File Server, discussed

next.

2.7 TFS

The Transactional File Server (TFS) specializes in the serving and managing of files on a given medium. The TFS is

a set of functions called by the runtime library to manage the sharing of database files among one or more runtime

library instances. In a normal multi-user configuration (see 2.8 Configurations below for more about configurations),

the TFS functions are wrapped into a server process called TFServer. To connect to a particular TFServer process,

the runtime library needs to know the domain name of the computer on which TFServer is running, and the port on

which it is listening, for example, “tfs.raima.com:21553”. Standard TCP/IP is used to make the connection, whether
the runtime library and TFServer are on the same computer or different computers (when on the same computer,

optimizations are made).

In Figure 3 below, it shows that one runtime library may have connections to multiple TFServers, and one TFServer

may be used by multiple runtime libraries. To the applications using the runtime libraries, and the TFServers, the

locations of the other processes are invisible, so all processes may be on one computer, or all may be on different

computers. This provides opportunities for true distributed processing.

Figure 3: Runtime library, TFServer configuration

A TFServer should be considered a “database controller” in much the same way as a disk is managed by a disk
controller. A TFS is initialized with a root directory in which are stored all files managed by the TFS. If one computer

has multiple disk controllers, it is recommended that one TFServer is assigned to each controller. This facilitates

parallelism on one computer, especially when multiple CPU cores are also present.

A complete application system may have multiple TFServers running on one computer, and multiple computers

networked together. Each TFServer will be able to run in parallel with the others, allowing the performance to scale

accordingly.

P a g e | 9

TECHNICAL WHITEPAPER

2.8 Configurations

This may be one of the most powerful, yet confusing aspects of RDM. The TFS functions are used by the runtime

library, so the programmer has no visibility of the calls made to them. These functions are made available to the

runtime library in three forms. For descriptive reasons, we call them TFSr, TFSt and TFSs:

TFSt The actual, full-featured TFS functions, called directly by the runtime library. Supports multiple

threads in a single application.

TFSr The RPC (Remote Procedure Call) library. When called by the runtime library, these functions

connect to one or more TFServer processes and call the TFS functions within them. A client/server

configuration.

TFSs “Standalone” TFS functions called directly by the runtime library, but intended only for single-

process use (if multiple threads are used, each must be accessing a different database only). To be

used for high-throughput batch operations while the database(s) are otherwise offline. Unsafe (but

fast) updates are allowed, meaning that database(s) should be backed up before making updates in

this configuration.

Currently, the runtime library is informed by the function called d_tfsinitEx. The default selection is TFSt, meaning that

the TFS functions are called in-process and that a separate TFServer should not be started.

Figure 4: TFS_TYPE_TFS Functions called by Runtime

The program may be multi-threaded, and the TFS functions are the full-featured, ACID-compliant functions.

P a g e | 10

TECHNICAL WHITEPAPER

Figure 5: TFS_TYPE_RPC Functions called by Runtime

Here, the functions in rdmtfs11 are RPC stub functions that marshal the parameters into a packet and send the

packet to TFServer, which demarshals the parameters, calls the actual TFS function, and sends the results back. The

runtime library sees the same behavior from the RPC functions as it does from the TFS functions when they are

linked directly (as in Figure 4). Like the TFSt functions, the TFSr functions are threadsafe.

Figure 6: TFS_TYPE_STANDALONE Functions called by Runtime

P a g e | 11

TECHNICAL WHITEPAPER

The third configuration, TFSs, is shown in Figure 6. In the standalone configuration, the TFS functions in rdmtfs11 are

deliberately stripped of their safety (double-writes to disk). This facilitates very fast batch (overnight, offline)

processing.

2.9 In-Memory Operation

Databases may be declared as “in memory,” meaning that the entire database will be maintained in RAM. Files within
databases may be declared as “in memory,” meaning that those files are maintained in RAM while the other files are
stored in a file system (this may be referred to as hybrid storage).

A TFS, running within TFServer, can be told to be diskless. In diskless mode, it cannot accept database definitions

that are not all in-memory. It will also keep all log files in memory. Log files are not stored in memory, even for in-

memory databases, unless the TFServer is operating in diskless mode.

An in-memory database may be either persistent or volatile. Volatile databases are temporary, and are expected to

be built and discarded in the course of an application’s operation. Persistent databases will have non-volatile backup.

The figure below shows the flow of a persistent in-memory database.

Figure 7: Loading & Saving a Persistent In-Memory Database

2.10 Language Support

Four programming APIs are available in RDM (five if you are using iOS). The Core API is intended for use with the C

language. The other APIs go through it. The C++ API uses C++ methods that have been created from the DDL. The

RSQL API is Raima’s Embedded SQL API that is compact and simple so that it works well in small-footprint

applications. Finally, ODBC is the standard API for accessing SQL databases. This one is built on top of RSQL, and

is available for programmers who are already familiar with the standard.

3. DATABASE UNIONS
The database union feature provides a unified view of multiple identically-structured databases. Since RDM allows

highly-distributed data storage and processing, this feature provides a mechanism for unifying the distributed data,

giving it the appearance of a single, large database.

As a simple illustration, consider a widely distributed database for an organization that has its headquarters in

Seattle, and branch offices in Boston, London and Mumbai. Each office owns and maintains employee records

locally, but the headquarters also performs reporting on the entire organization. The database at each location has a

P a g e | 12

TECHNICAL WHITEPAPER

structure identical to the others, and although it is a fully contained database at each location, it is also considered a

partition of the larger global database. In this case, the partitioning is based on geographical location.

Figure 8: Wide-area Distributed Database

The mechanism for querying a distributed database is simple for the programmer. When the database is opened, all

partitions are referenced together, with OR symbols (“|”) between the individual partition names.

Partitioning and unified queries are also used for scaling the performance. Consider a database where each

operation begins with a lookup of a record’s primary key. If the “database” is composed of four partitions, each stored
on the same multi-core computer, but on different disks controlled by different disk controllers then the only

requirement is a scheme that divides the primary key among the four partitions. If that scheme is a modulo of the

primary key, then the application quickly determines which partition to store a record into or read the record from.

Since there are multiple CPU cores to run the multiple processes (both the applications and the TFSs), and the four

partitions are accessible in parallel (the four controllers permit this), the processing capacity is four times bigger than

with a single-core, single-disk, single-partition configuration.

P a g e | 13

TECHNICAL WHITEPAPER

4. INTEROPERABILITY
Standard interfaces allow the outside world (that is, tools that can interface to a variety of data sources) to view and

manipulate data in an RDM database. While most application systems based on RDM are “closed,” there are many
advantages to using languages (Java, C#, etc.) and tools (Excel, Crystal Reports, etc.) to access the data used by

the system. Raima has chosen ODBC, JDBC and ADO.NET as standard interfaces. ODBC is already implemented

as a C API, meaning that C/C++ programmers can write programs that access the database through ODBC

functions. This API may be used within any environment. On Windows, the ODBC driver has been provided for

access from third party tools. JDBC and ADO.NET permit connection to an RDM database using the standard

methods.

5. PLUS FUNCTIONALITY
The Plus functionality adds the ability to move data (or operate in a distributed environment) through mirroring or

replication (each of which will be defined below).

5.1 Mirroring

Raima defines a database mirror as a byte-for-byte image of an original (master) database. Hence, mirroring creates

one or more additional copies of an RDM database. And rather than just copying files, the process involves copying

transaction logs so that mirror copies are updated incrementally and synchronously.

As discussed above, runtime libraries create transaction log files and submit them to the TFS. The TFS then assigns

the transaction log a number and places it into a file identified by the transaction number. In due time, the log will be

safely written to the database files, together with other transaction logs.

Ordinarily, the transaction log files may be deleted after they are written to the database files. But when mirroring is

active, the log files are retained. Then, upon request, they are copied to one or more other computers, where they are

written to the database files there, bringing those database files up to date with the originals. The same process for

performing safe updates of database files is used on both master and slave computers. Besides the pieces required

for safe transfer of the log files, no additional software (meaning no additional complexity) is required. See the

following figure.

Figure 9: Mirroring by Copying Transaction Logs

P a g e | 14

TECHNICAL WHITEPAPER

5. 2 Replication

Raima’s replication functionality provides a different angle on moving data, as compared to mirroring. Raima defines

replication as an action-for-action movement of data, rather than byte-for-byte, as it is with mirroring. Because of the

replication of database actions, it is possible to aggregate data from multiple RDM master databases into a single

database. It is also possible to represent the actions as commands to different types of database systems, as

discussed further below.

With action-for-action replication, changes in an RDM database are captured as a series of create, delete, update,

connect, etc., operations. The runtime library creates this replication log when configured to do so. Each one contains

a complete transaction’s-worth of actions. The log is then transferred to the TFS which is in charge of administering

all replication logs to replication clients. Replication clients receive the replication log files and convert them into the

equivalent actions necessary for the local DBMS, which may be another Raima database, but more than likely is

MySQL, SQL Server or Oracle. For the SQL DBMSs, the actions are converted into SQL.

The RDM processing of replication log files is the same as the processing of transaction log files. Figure 10 below

illustrates the replication process.

Figure 10: Replication using Action Logs

6. PUTTING THE PIECES TOGETHER
This section will illustrate several configurations that solve different types of problems. The subsections will identify

the problem, and show how the pieces are used together.

P a g e | 15

TECHNICAL WHITEPAPER

6.1 High Availability

The Problem: The application(s) must keep running all of the time, this application’s “state” is far more than a
few kilobytes, and it changes frequently.

The Solution: Build a redundant application with an active and a standby computer. Keep the application’s
“state” in a database, and synchronously mirror the database from the active to the standby
computer.

Package: RDM Plus

Even more than ever, it is not acceptable for a computer system to discontinue its service even for a minute. There

are many practical solutions to this requirement, and RDM has been designed to support an active/standby

configuration. The active computer is performing the work, but the standby is prepared to take over should there be

any problem with the active.

The solution involves an application that stores every important piece of information into a database, an HA monitor

process that runs on both active and standby computers, and RDM for storing the data and mirroring it from the

active to the standby computer.

Should there be a problem with the active computer, where it is no longer able to respond or perform, the

application's HA Manager on the standby computer is responsible for determining its need to take over. It will find the

database fully up-to-date, and will be able to switch it from being a mirroring slave into a master database. Then the

application can be restarted or activated on the standby computer and take over exactly where the active computer

left off.

See the figure below for the general configuration of active/standby.

Figure 11: High Availability Configuration - Active/Standby

P a g e | 16

TECHNICAL WHITEPAPER

6.2 High Throughput

The Problem: System throughput is critical, and the load is expected to increase over time. You need to

make sure the system keeps up with current demand and be able to scale up the performance

to keep up with the expected growth.

The Solution: Facilitate parallelism. This section will show one scalable configuration.

Package: RDM Standard

It’s important to note that scaling up performance of a system always involves adding computer hardware. The trick,

especially with a shared resource like a database, is to add pieces (both hardware and software) that can run in

parallel. If a system is divided up into pieces that end up blocking or interfering with each other, nothing is gained.

Again, parallelism is the key, if parallel units do not impede the others.

The architecture recommended here requires a separate disk controller for every disk drive. Why? Because even with

multiple CPU cores executing multiple independent processes on different disk files, a single disk controller will end

up serializing the disk access. So the computer is a multi-core computer with 2 cores for every disk controller/drive.

For example, 8 cores with 4 controllers/drives. Given this hardware configuration, a software configuration needs to

be designed for parallel operation. A necessary ingredient for parallel software operation is a database that is

partitioned such that each partition can be updated independently from the other partitions.

Figure 12: Scaling Up through Parallelism

The applications in the figure above will open 4 different databases within 4 different “task” structures, and then

decide, based on a primary key, which database a record belongs in. It will either find it there or create it there.

Reading is different. Within one “task” structure, all 4 databases should be opened in one call (using the Distributed
Package’s database union feature) and reading should be done without locks by using MVCC (Multi-Version

Concurrency Control) read-only-transactions.

Note also that CPU cores are depicted as though they are assigned to application processes, but the reality is that

they are normally operating as SMP, so they will be scheduled to execute the processes that are available. In this

case, it will potentially be all 4 TFSs and up to 4 application processes.

P a g e | 17

TECHNICAL WHITEPAPER

6.3 Networking

The Problem: A wide-area application may be deployed worldwide, but may need to operate as a single suite

of programs. Since processing may be widely distributed, it also makes sense to distribute the

data. How do you do this without incurring performance problems?

The Solution: The key is to minimize network communications and the latency that grows worse with

distance. Use both mirroring and remote logins, depending on the particular interaction.

Package: RDM Plus

The design heuristics are as follows:

 Databases should reside within the same computers as the processes that update them. Other processes

that update the databases (through remote login) should be within a high-speed LAN.

 Databases that are frequently read by processes that are only accessible through WAN should be mirrored

to the reading location. This will conserve network communications unless the database is updated

frequently.

 Wide-area reading of databases that are frequently updated should be through remote login.

Since RDM allows both remote logins (accessing a TFS from a different computer) and mirroring (keeping a readable

copy of a database that is mastered elsewhere), it is possible to optimize network performance by analyzing the

volume of transactions and queries between different locations.

When a database is updated infrequently but read frequently from other locations, the overhead of sending changed

pages to the mirror computers is much less than supporting remote logins from the remote computers. But very

active databases can cause a flood of transaction logs to be transferred across a network, even if they are not going

to be read before they are changed again. Remote logins are optimum when a remote process does infrequent

reading, because the remote login will only send pages from the TFS to the runtime when they are needed by the

reading process.

Figure 13: Mirroring or Remote Login

P a g e | 18

TECHNICAL WHITEPAPER

6.4 In the Office

The Problem: An application is developed to run very quickly in an office where several workstations are

used for data entry. Each entry must be unique. The data must be replicated into an Oracle

server after it is verified to be correct.

The Solution: A single RDM database will be managed by a TFS running on one computer. All known data

will be kept in this database so that existing entries can be updated or new ones can be added.

All changes will be replicated to the Oracle database. Note that this solution is scalable through

horizontal partitioning.

Package: RDM Plus

The generic concept of an office full of operators entering data into a database applies to a great many applications.

For this example, consider it to be ticket orders, where operators receive calls from customers who may or may not

have purchased tickets before. A record of all purchases will be maintained in the database. A completed order will

be saved in the RDM database, and this order will also generate a replication log that is forwarded to the Oracle

server, where the remainder of the ticket processing occurs.

A typical process cycle will have the application look up a name to find out if the person’s record exists yet. A MVCC

read-only-transaction does this without inhibiting performance. Then the person’s record is created if necessary and
the ticket order is processed. Once committed to the RDM database, the replication log will be forwarded to the

Oracle computer where the RDM replication utility will enter the new or changed data into the Oracle database.

A single-partition solution is shown below:

Figure 14: Data Entry Application System

P a g e | 19

TECHNICAL WHITEPAPER

Assuming that this is a highly successful call center, the system expands from 10 to 50 operators. The load created

by the operators exceeds the capacity of one TFS, so a horizontally partitioned solution is deployed. This means that

the primary key for a customer (probably last name, first name) is used by the application to determine which partition

the customer record belongs in. If there are three partitions, each application will first determine which partition to use

based on the name, and then perform exactly the same transaction as before.

The next figure shows the three-partition solution, where RDM is still used to replicate the orders to the Oracle server,

which aggregates the entries from all sources. Note also that the Oracle server will receive updates identical to those

that were submitted prior to the partitioning.

Figure 15: Partitioned Data Entry Application System

The Unified Query feature could be used with a partitioned database to perform queries on the entire RDM database

(all three partitions). The queries could be written in the Core API when they are common or in SQL when ad-hoc

queries are required.

6.5 In the Field

The Problem: Embedded computers are now powerful enough to perform significant processing at the

location of the relevant activity. Where devices formerly measured temperature, counts,

pressure, etc., passing their readings on to another location that processed the inputs, now it is

financially viable to replace these measurement devices with computers that can store

parameters, read several inputs, filter and process the inputs, and pass the relevant data on to

a higher level computer.

The Solution: Taking advantage of the powerful embedded computers requires order that can be realized

with software. RDM can place pieces of database software at multiple levels so that

information is shared in a timely way with parts of the system that need it.

Package: RDM Plus

P a g e | 20

TECHNICAL WHITEPAPER

Consider a (imaginary) system installed in buildings where each elevator door counts people entering or exiting on

every floor. Additional controllers measure power consumption on various circuits on each floor, and all are

connected to a central computer in the building. The building is connected to a SCADA system at headquarters

where several buildings are managed. If the power consumption controllers also had control over thermostats, HVAC

systems and blowers, then there is enough information and control to administrate, optimize and report on energy

use and costs.

An architecture for this system would include head count sensors at the elevator doors, embedded computers in

place of all thermostats, and a central computer connected to all of these devices with a dashboard allowing a

building operator to view building activity and issue come controls. The building computer would then be connected to

headquarters through internet, where it passes information to/from the SCADA at headquarters.

 Figure 16: Data Flow and Building Power Management

RDM applications will be running within the embedded thermostat units, the building computers and the SCADA

system. From the embedded computers to the building computer, data will be replicated. In the other direction, data

will be mirrored.

The data mirrored to the embedded computer will contain operational parameters that are managed and set at the

building level. Between a building computer and the SCADA, replication will be used to pass summarized building

data to the SCADA, and control information from the SCADA will be passed to the building computer through

mirroring.

P a g e | 21

TECHNICAL WHITEPAPER

Figure 17: Details of Local Building Management

7. CONCLUSION
The goal of this paper was to provide a technical description of the RDM 11.0 product, sufficient for an evaluation and

decision-make process. Of course, there are many more details available for the evaluation process, but they may

take hours or days longer to obtain. The best evaluation is through downloading and running the product. Together

with that, the manual set contains extended examples and explanatory text.

As a highly technical product with many shapes and sizes, many of Raima’s customers have also benefitted from a
consultative analysis of their database design or coding process. This can result in significant optimizations and be

instructive in the use of Raima’s products.

P a g e | 22

TECHNICAL WHITEPAPER

Want to know more?

Please call us to discuss your database needs or email us at info@raima.com. You may also visit our website for the

latest news, product downloads and documentation:

www.raima.com

Headquarter: 720 Third Avenue Suite 1100, Seattle, WA 98104, USA T: +1 206 748 5300

Europe: Stubbings House, Henley Road, Maidenhead, UK SL6 6QLT: +44 1628 826 800

Copyright Raima Inc., 2012.

mailto:info@raima.com

