

P a g e | 1

TECHNICAL WHITEPAPER

Foreign and Primary Keys in RDM Embedded
SQL: Efficiently Implemented Using the
Network Model

By Randy Merilatt, Chief Architect - January 2012

This article is relative to the following versions of RDM:

 RDM Embedded 10.1

Network model databases have been viewed as strictly non-relational and outdated. But in the 1990s when the SQL

standard incorporated support for declared foreign keys to represent inter-table relationships, the gap between the

relational and the network model representation of a database narrowed. This was exploited by Raima in RDM Server

(RDMs) with the introduction of the create join statement that allowed an SQL foreign and primary key relationship to be

explicitly mapped into a network model set. in 2009, when Raima decided to add SQL to RDM Embedded (RDMe) we

decided to keep RDMe SQL as simple and as free of as many unnecessary, non-standard extensions as possible.

Hence, network model sets are automatically (i.e., implicitly) used in the implementation of foreign and primary key

relationships. This paper describes how network model sets are implemented in the RDMe core-level database engine,

the syntax and semantics of SQL foreign and primary keys, and why the use of network model sets provides an efficient

and high performance implementation for them.

The Network Database Model: A Little History

The primary data organization mechanism that was provided in some very early database management systems (DBMS)

was the ability to declare a one-to-many relationship between a parent record type (table) and a child record type. These

systems were known as hierarchical model systems because the data was strictly hierarchically arranged—each child

could have only one parent. The DBMS provided access methods where each child instance for a particular parent

record instance could easily and quickly be accessed. Later database systems relaxed the strict hierarchical scheme so

that a child could belong to more than one parent and were called network model systems. A standard database

language came to be defined by a standards body known as CODASYL ("Conference of Data Systems Languages") that

specified how a network model database could be defined (through a DDL—Data Definition Language—specification) and

accessed and manipulated (through a DML—Data Manipulation Language—specification) designed to work with COBOL

programs. The one-to-many parent-child inter-record type relationships in a network model database were specified by

what is called a set. The example below shows the DDL for a CODASYL DBMS (Univac DMS 1100 circa 1973) which

defines two record types, author and book, and a set that defines the one-to-many relationship between the two.


 Currently called DMS 2200 which Unisys continues to maintain and support.

P a g e | 2

TECHNICAL WHITEPAPER

Figure 1. Example of a CODASYL DDL Specification of a Parent and Child Record and a Set:

RECORD NAME IS AUTHOR

 RECORD CODE IS 1

 LOCATION MODE IS CALC NAMEHASH

 USING NAME

 DUPLICATES ARE NOT ALLOWED

 02 NAME PIC X(35)

 02 YEAR-OF-BIRTH PIC 9999

 02 YEAR-OF-DEATH PIC 9999

RECORD NAME IS BOOK

 RECORD CODE IS 2

 LOCATION MODE IS VIA BOOKS-BY-AUTHOR SET

 02 TITLE PIC X(60)

 02 YEAR-PUBLISHED PIC 9999

SET BOOKS-BY-AUTHOR

 MODE IS CHAIN LINKED PRIOR

 ORDER IS LAST

 OWNER IS AUTHOR

 MEMBER IS BOOK AUTOMATIC LINKED TO OWNER

 SET OCCURRENCE SELECTION IS THRU LOCATION

 MODE OF OWNER

Retrieving data is done in a COBOL DML program by navigating through sets to locate the desired records. For example,

first a FETCH for a specific AUTHOR record occurrence would be executed followed by a FETCH of each BOOK record

that is a member of the BOOKS-BY-AUTHOR set for which the fetched AUTHOR was the owner. Thus, multiple

statements are executed in order to retrieve the desired data. In the example above, the BOOK occurrences that are all

members of the same set are directly related together through a doubly linked list—no index is needed—providing optimal

(i.e., maximum of 1 logical read) access. The following diagram shows how a typical BOOKS-BY-AUTHOR set instance

may be stored in the database.

Figure 2. Example Set Instance Implementation:

P a g e | 3

TECHNICAL WHITEPAPER

The DBMS maintains in the owner record pointers to the first and last member records in the linked list and for each

member pointers to the prior and next member along with a pointer to the owner. These "pointers" are called database

keys (or database addresses) and directly map into the actual location where the record is permanently stored on disk.

When a new book is stored along with its title (and whatever other data fields are included in the record's DDL declaration)

the author name will also be provided. However, it is not actually stored with the book record but will be used to find the

author record with that name so that when the book is stored it will be connected to the correct BOOKS-BY-AUTHOR set

instance. In this way the author name functions like the primary key in the AUTHOR record type and a foreign key in the

BOOK record type even though no such data field is declared in BOOK.

RDMe Core-Level DDL Set Declarations

From its original incarnation in 1983 as db_VISTA, RDM Embedded has been a network model DBMS but one that was

designed for use with the C programming language rather than COBOL. Figure 3 below gives the RDMe Core (i.e. low-

level) DDL specification corresponding to that given in Figure 1.

Figure 3. RDMe Core DDL Specification of Parent and Child Record and a Set:

record author {

 unique key char name[36];

 short year_of_birth;

 short year_of_death;

}

record book {

 char title[61];

 short year_published;

}

set books_by_author {

 order last;
 owner author;

 member book;

}

Data retrieval is performed by the C program by making calls to the RDMe Core-level C API functions that lookup records

based on a specified key value (e.g., the author name) and then locating the related book records by calling a function

that retrieves the members of the set. So, like CODASYL. retrieval is navigational.

Declared Foreign and Primary Keys in SQL

One-to-many relationships between tables (= record types) in SQL are explicitly defined in the create table statement

through primary and foreign key column declarations. A primary key is a column (or columns) in a (parent) table which is

used to uniquely identify each row (= record occurrence) of the table. A foreign key is a column (or columns) in a (child)

table that is used to identify the primary key value of the related row from the parent table. Foreign key column(s) must be

declared to have the identical data type as its referenced primary key column(s). The SQL DDL that corresponds to the

DDL given earlier in and Figure 3 is shown in Figure 4 below.

P a g e | 4

TECHNICAL WHITEPAPER

Figure 4. SQL DDL for Parent and Child Tables:

create table author

(

 name char(35) primary key,

 year_of_birth smallint,

 year_of_death smallint

);

create table book

(

 title char(60),

 year_published smallint,

 name char(35) not null references author(name)

on delete cascade on update cascade

);

The foreign key is declared on the name column in the book table with the references clause. The on delete cascade

and on update cascade clauses specify what is to happen when a row of the author table is deleted or updated. When

cascade is specified then on a delete all of the related book rows will automatically be deleted as well. On an update of

the author's primary key column (e.g., fixing a misspelled author name) all of the related book rows will automatically

updated. In a standard relational DBMS, in order for these operations to be performed in a reasonable amount of time the

name column in the book table would need to be indexed (something that the DBMS might automatically create based on

the cascade specification).

Explicit declaration of foreign keys allows the DBMS to enforce referential integrity in which the system ensures that all

rows from the primary key table that are referenced by foreign keys always exist. For example, besides the cascade

option, the on clause can specify restrict which means that the update or delete on the author row is not allowed when a

book row that references it exists.

Retrieval is performed through an SQL select statement that specifies a join between the two tables that conditionally

equates the two tables through the foreign and primary keys. The diagram below shows how the rows from the two tables

are related through the common foreign and primary key column values.

Figure 5. Relational Database Representation of a Parent-Child Table Join:

P a g e | 5

TECHNICAL WHITEPAPER

The dotted-line arrows represent the primary key row being referenced by the foreign key column values—they are not

actually pointers. The select statement that can be used to retrieve the data is shown below along with its result set.

Figure 6. SELECT Statement to Retrieve Author-Book Data:

SELECT name, title FROM author natural join book where author.name = "Wells, H. G."

name title

Wells, H. G. The Time Machine

Wells, H. G. The Island of Dr. Moreau

Wells, H. G. The Invisible Man

Wells, H. G. The War of the Worlds

Foreign Key Implementation with Sets

An SQL DBMS needs to be able to efficiently manage all of the properties associated with foreign key declarations such

as:

1. fast access from the primary key row to all rows with matching foreign key values,

2. fast access from the foreign key row to the referenced primary key row,

3. ability to quickly check to ensure a referenced primary key row exists,

4. ability to quickly determine if a primary key row has references

Relational database systems usually do this by creating a unique index on the primary key column values and a non-

unique index on the foreign key column values. By having indexes on both the primary and foreign keys all four of the

above requirements can be supported.

The cost, however, comes in the amount of redundant data introduced by the duplicate foreign key column values in

which not only is each stored in a row of the foreign key table but also in the index. Moreover, the cost of accessing a

foreign key row using the index, while usually acceptable, may still involve 2 or 3 additional disk accesses.

Foreign and primary key relationships can easily and efficiently be implemented using network model sets and that is

exactly what RDM Embedded SQL does.

By using sets, all of the rows of the foreign key table that reference the same primary key row are maintained in a link list

much as is shown in Figure 2. This means that the related rows can be retrieved by direct access (guaranteed to require

no more than a single disk read).

Use of sets to implement the foreign and primary key relationships also means that the foreign key columns can be

virtual—that is, their values do not actually need to be stored in the foreign key table as those values can be easily

retrieved from the referenced row through the set's owner pointer. That, coupled with the fact that the foreign keys do not

need to be indexed, can significantly reduce the amount of redundant data. It also means that the work needed to be

done in order to process a cascade update (where the foreign keys are all instantly updated whenever the primary key

value changes) and delete (the related rows to be deleted are all directly connected to the referenced row) is minimized.

So, by using sets to implement SQL foreign and primary key relationships, RDM Embedded SQL not only provides

optimal performance but does so with less storage requirements than needed in a relational-only implementation.

Relational Model Versus Network Model

The differences between relational and network model databases are often characterized as being mutually exclusive.

But as shown above, from a database organization standpoint, they are compatible because a network model

implementation using sets can efficiently be used to implement relational model foreign and primary key relationships.

However, the real difference between the two models is in how the data is accessed not in how it is defined (or

implemented).

P a g e | 6

TECHNICAL WHITEPAPER

Access to database data in a network model database requires that the application program navigate through set

occurrences, one member record occurrence (i.e. row) at a time to locate the desired record occurrence(s). Using a

relational database model language (e.g., SQL), a single select statement will perform the needed navigation and, thus, is

much simpler. The advantages of the relational model are most significant in performing queries. For storing, modifying,

deleting and retrieving individual record occurrences (table rows), however, there is no significant advantage. But only

with RDM can you choose which approach is best for your application requirements.

Want to know more?

Please call us to discuss your database needs or email us at info@raima.com. You may also visit our website for the

latest news, product downloads and documentation:

www.raima.com

Headquarter: 720 Third Avenue Suite 1100, Seattle, WA 98104, USA T: +1 206 748 5300

Europe: Stubbings House, Henley Road, Maidenhead, UK SL6 6QLT: +44 1628 826 800

Copyright Raima Inc., 2012.

mailto:info@raima.com

