

TTEECCHHNNIICCAALL WWHHIITTEE PPAAPPEERR

http://www.raima.com

IS USING SQL IN AN EMBEDDED COMPUTER

APPLICATION LIKE TRYING TO SQUEEZE
AN ELEPHANT INTO A MINI?

A Raima Inc. Technical Whitepaper

Published: April, 2010
Author: Randy Merilatt

Distinguished Engineer
Copyright: Raima Inc.

Abstract
SQL, like it or not, has become the industry’s standard database access language. This being the case many

companies that are involved in the development of embedded computer applications with database

management requirements would like to be able to use SQL to access and manipulate that database

information. This article takes a looks at ways developers of embedded applications can efficiently make use of

SQL in their applications.

This article is relative to the following versions of RDM:

 RDM Embedded 9.x, 10.0

 Page | 2 http://www.raima.com

TTeecchhnniiccaall WWhhiittee PPaappeerr

Contents
Abstract ..1

Introduction ..3

An Abridged SQL for Embedded Applications ..3

Security ...4

Views ..4

Check Integrity Constraints ..4

Triggers ...4

Static versus Dynamic DDL ...4

Integrating SQL with Embedded Applications ..5

Compiled Database Catalog Modules ..5

Static Execution of Pre-Compiled SQL Statements ..7

User-Defined, C-Based Functions, Procedures, and Virtual Tables ..9

Other Significant RDM Embedded Features .. 13

Conclusion ... 13

Contact Information .. 14

 Page | 3 http://www.raima.com

TTeecchhnniiccaall WWhhiittee PPaappeerr

Introduction
According to Wikipedia’s entry entitled “Elephant joke”, there’s an old one that goes like this:

Q. How many elephants will fit into a Mini?

A. Four: two in the front, two in the back.

Q. How many giraffes will fit into a Mini?

A. None. It’s full of elephants.

Of course, if it is possible to get four elephants into a Mini then it must be pretty easy to get one in. In which

case, there must also be no problem using SQL in an embedded computer application! But, even if one does

succeed in getting the elephant into the car, the added weight will certainly have a significant negative impact

on its speed. Such is the opinion of many—including me—on the advisability of using SQL in an embedded

database application. The most recent edition of Volume 2 of the ANSI/ISO SQL standard is over 1300 pages

long. That’s about twice the size of the 1992 standard which itself was considerably larger than the original 1989

standard. A fully-compliant implementation of SQL (which I do not know actually exists) is indeed a monster. For

any SQL DBMS implementer, just the effort involved to understand the standard in order to construct a

commercially-viable, fully-compliant implementation is immense.

Nevertheless, SQL has become the industry standard database access language. As such, there are many

software developers who know how to use SQL. Because of this vast availability of SQL database skills, many

companies that are involved in the development of embedded computer applications with database

management requirements would like to be able to use SQL to access and manipulate that database

information.

The DBMS capabilities that are needed in embedded computing applications are not nearly as broad as those

needed in enterprise systems. The purpose of this paper is to identify the features of SQL that are not useful in

embedded applications and to show some of the ways that Raima is adapting an abridged version of SQL that

allows it to be tightly integrated with the application.

An Abridged SQL for Embedded Applications
What should an1 SQL DBMS for embedded applications look like? First of all it needs to look more like a

greyhound (dog, not bus) than an elephant. Embedded computing environments often have resource limitations

and execution timing requirements that cannot tolerate applications that consume a large amount of memory

and time. Hence, only those DBMS capabilities that are really needed should be provided in order to minimize

the memory consumption of the DBMS.

The following features of standard SQL are not features that are typically needed in embedded computing

environments. Of course, there may be legitimate situations where this assumption is not valid but we maintain

that for the vast majority of embedded applications these features are not required. The primary goal is to

provide basic SQL capabilities in as “lean and mean” an implementation as possible.

1
 There is often uncertainty about the indefinite article (“a” or “an”) to use with “SQL.” It really all depends on how one is

supposed to pronounce “SQL.” Is it “sequel” or is it “ess kue ell?” According to Wikipedia

(http://en.wikipedia.org/wiki/SQL), it is pronounced according to the latter.

 Page | 4 http://www.raima.com

TTeecchhnniiccaall WWhhiittee PPaappeerr

Security
The SQL GRANT and REVOKE statements are provided to specify which parts of a database a particular user or

class of users can access as well as the kinds of access they can perform. Embedded applications typically

execute in environments where the number of users (not necessarily human) is restricted to one or just a few.

This is not to imply that security is not an important issue in embedded applications. It is just that the kind of

needed security is quite different than that which is provided through SQL. The device on which the embedded

application runs does not typically have a lot of different users accessing the data. Also, SQL security is designed

to provide the ability to isolate different segments of the data to different users. This is simply not how data on

an embedded device is typically used.

Views
Views are typically used in conjunction with SQL security to define which segments of the data can be accessed

by particular users. Thus, the same argument against SQL security applies to views as well.

Check Integrity Constraints
The CHECK clause of the CREATE TABLE statement is used to define constraints on the data that can be stored in

the table. Now embedded applications do indeed have important integrity constraints that need to be enforced.

It is just that doing so in an interpreted expression evaluation method embedded within the SQL system is

probably not the most efficient way to implement them given the timing and memory constraints in a typical

embedded application.

Triggers
Triggers are stored procedures that are automatically “fired” by the SQL system when the conditions on which

the trigger is defined are met. These conditions involve updates to specified columns in the table. Trigger actions

usually involve making changes to other tables which can themselves have triggers. Because it is very difficult to

control the timing behavior associated with triggers they are often not really all that suitable for embedded

applications. This is not to imply that the trigger concept is incompatible with embedded applications. On the

contrary, as an event-driven mechanism it is conceptually at least very useful. The issue, however, lies with

which part of the system maintains control. Our contention is that it is best for the application code itself to

maintain control rather than within a 3rd party SQL DBMS implementation of triggers.

Static versus Dynamic DDL
Dynamic DDL allows the structure of a database (as defined by SQL DDL statements) to be modified “on the fly.”

This provides for great flexibility and ease of making system upgrades that involve changes to existing database

structures. This flexibility does not come without a cost in the amount of additional complexity needed to

accommodate this structural flexibility. Alternatively, while surely less flexible, static DDL is much less complex

and processing is usually much more efficient—a situation that is preferable for embedded applications.

 Page | 5 http://www.raima.com

TTeecchhnniiccaall WWhhiittee PPaappeerr

Integrating SQL with Embedded Applications
Raima is incorporating several special features into its new RDM Embedded SQL system that allow it to be tightly

integrated with an embedded computing application. While these features are not particularly elegant, they are

compact, efficient, easy to use and very practical. Three of the key features which will be described in more

detail in the remainder of this article are:

 Compiled Database Catalog Modules,

 Static execution of pre-compiled SQL statements,

 User-defined, C-based functions, procedures, and virtual tables.

Compiled Database Catalog Modules
SQL DBMS implementations store the meta-data associated with a particular database in what is usually called

the “system catalog.” The meta-data includes the database’s definitions of tables, columns, foreign and primary

keys, constraints, security information, views, and stored procedures among other things. This data is often

stored in its own database. In fact, RDM Server SQL does just that. Access to the catalog information is needed

to compile and execute SQL statements. It is particularly important in an embedded application that the cost to

access catalog information be as small as possible. To that end, RDM Embedded (RDMe) SQL provides the option

where the catalog information for a database can be encapsulated in a C program module that can compiled in

directly with the application program.

For example, the following gives the RDMe SQL DDL specification for a very simple personal library database.

create database mylib;

create table author

(

 id char(5) primary key,

 name char(48) not null

);

create table genre

(

 class char(3),

 code char(3),

 descr char(32),

 primary key g_key(class, code)

);

create table book

(

 id integer primary key,

 title char(72),

 publ_info char(50),

 g_class char(3) not null,

 g_code char(3) not null,

 auth_id char(5) not null references author,

 foreign key genre_id(g_class, g_code) references genre(class, code)

);

 Page | 6 http://www.raima.com

TTeecchhnniiccaall WWhhiittee PPaappeerr

RDMe SQL will compile these statements and store the information in the following C file called mylib_cat.c.

/* RDMe-Created SQL catalog initialization file: February 10, 2010 */

#include "mylib_dbd.h"

#include "sqlcat.h"

SYSDOMAIN * mylib_domain = NULL;

SYSTYPE * mylib_type = NULL;

SYSTABLE mylib_table[] = {

 {"author",10000,74,0,2,0,1,0,0,0,0,0,0,'n',55,1,NULL},

 {"genre",10001,60,0,3,2,1,1,0,0,0,0,0,'n',41,1,NULL},

 {"book",10002,159,0,6,5,1,2,2,0,0,0,0,'n',128,2,NULL}

};

int16_t mylib_colkeys0[] = {0};

int16_t mylib_colkeys2[] = {1};

int16_t mylib_colkeys3[] = {1};

int16_t mylib_colkeys5[] = {2};

SYSCOLUMN mylib_column[] = {

 {"id",1,6,0,-1,-1,0,0,0,10000,0,0,1,1,mylib_colkeys0},

 {"name",1,49,6,-1,-1,0,1,1,10000,0,0,0,0,NULL},

 {"class",1,4,0,-1,-1,1,0,1000,10001,0,0,1,1,mylib_colkeys2},

 {"code",1,4,4,-1,-1,1,1,1001,10001,0,0,1,1,mylib_colkeys3},

 {"descr",1,33,8,-1,-1,1,2,1002,10001,0,0,1,0,NULL},

 {"id",10,4,0,-1,-1,2,0,2000,10002,0,0,1,1,mylib_colkeys5},

 {"title",1,73,4,-1,-1,2,1,2001,10002,0,0,1,0,NULL},

 {"publ_info",1,51,77,-1,-1,2,2,2002,10002,0,0,1,0,NULL},

 {"g_class",1,4,0,-1,-1,2,3,-1,10002,20001,2,0,0,NULL},

 {"g_code",1,4,0,-1,-1,2,4,-1,10002,20001,3,0,0,NULL},

 {"auth_id",1,6,0,-1,-1,2,5,-1,10002,20000,0,0,0,NULL}

};

int16_t mylib_keycols0[] = {0};

int16_t mylib_keycols1[] = {2,3};

int16_t mylib_keycols2[] = {5};

SYSKEY mylib_key[] = {

 {"id_SYSK01",3,3,0,0,1,mylib_keycols0,0,0,0,'n'},

 {"g_key",3,1004,1,0,2,mylib_keycols1,0,0,0,'n'},

 {"id_SYSK03",3,2004,2,0,1,mylib_keycols2,0,0,0,'n'}

};

int16_t mylib_refcols0[] = {10};

int16_t mylib_refcols1[] = {8,9};

SYSREF mylib_ref[] = {

 {"auth_id",20000,0,0,2,'r','r',1,mylib_refcols0},

 {"genre_id",20001,1,1,2,'r','r',2,mylib_refcols1}

};

SYSDB mylib_cat = {

 "mylib",'n',0,0,11,0,0,3,11,3,2,

 (void *)&mylib_type,(void *)&mylib_domain,(void *)&mylib_table,

 (void *)&mylib_column,(void *)&mylib_key,(void *)&mylib_ref,

 (void *)&mylib_dbd,sizeof(mylib_dbd),0

};

A file named mylib_cat.h is also created containing an external declaration to the mylib_cat global

variable. By the way, RDMe SQL maps the SQL DDL into RDMe core-level DDL and then invokes the core-level

DDL processor (DDLP) to compile the core DDL. The “database dictionary” is created by the core DDLP and it

stores it in a C file called mylib_dbd.c. An external reference to the core dictionary global variable is

contained in mylib_dbd.h which, as you can see in the above example is included in the mylib_cat.c

module.

RDMe SQL provides the user with the ability to specify the address of the mylib_cat struct through a call to

SQLSETCONNECTATTR so that the SQL system knows where to find the catalog information when the database is

 Page | 7 http://www.raima.com

TTeecchhnniiccaall WWhhiittee PPaappeerr

first opened when SQLCONNECT is called. Thus, the system catalog data becomes an integral part of the

application code and does not need to be stored in a file. However, the catalog (and dictionary) data is also

written to standard, binary files. Hence, the database meta-information can be compiled in with the application

or maintained separately in an outside file.

Static Execution of Pre-Compiled SQL Statements
SQL is designed to provide the ability to dynamically compile and execute SQL statements. This allows users to

issue a wide variety of queries on the database information. Figure 1 gives a diagram that shows a typical RDMe

SQL application that includes the ability to compile and execute SQL statements. (The RDMe TFS refers to the

“Transaction File Server” which is a separate program that manages all database I/O, transactions, and locking).

Figure 1 - Dynamic RDMe SQL Application

Embedded applications, however, typically have well-defined data access and manipulation requirements and so

they just simply do not need to have the ability to support ad hoc query processing. As much as 25-30% of an

SQL implementation goes to the support of dynamic compilation. Thus, if this can be eliminated from the

embedded application code, a not insignificant amount of memory can be saved.

 Page | 8 http://www.raima.com

TTeecchhnniiccaall WWhhiittee PPaappeerr

In order to do this, RDMe SQL provides the ability to define a basic stored procedure that can contain either one

or more SELECT statements or one or more INSERT, UPDATE, or DELETE statements. These statements would be

compiled on a host development computer system. The compiled form of the stored procedure is stored in both

a C file and a binary file. Like the catalog modules described earlier in this article, the stored procedure C file can

be compiled with the application.

For example, the following SQL stored procedure retrieves the row of table book with id equal to the specified

argument.

create procedure getbook(bid smallint) as

 select * from book where id = bid

end proc;

SQL stores the compiled procedure in a binary file called getbook.ssp and in a C file called getbook_ssp.c. A

portion of the contents of the C file is shown below.

/* RDMe-Created SQL Stored Procedure File: March 23, 2010 */

#include "rsqltypes.h"

RSQL_VALUE getbook_args[1] = {

 {9}

};

STMT_DESCR getbook_descrs[1] = {

 {3, 360, 0}

};

uint8_t getbook_stmts[360] = {

 0x03, 0x00, 0x00, 0x00, 0x68, 0x01, 0x00, 0x00, 0x00, 0x00, 0x05, 0x00,

 . . .

 0x00, 0x00, 0x75, 0x17, 0x00, 0x00, 0x00, 0x32, 0x90, 0x00, 0x00, 0x00

};

PROC_EXEC getbook_defn =

{"getbook", 0, 1, 1, 0, 360, getbook_args, getbook_descrs, getbook_stmts, NULL};

…

The application program calls an RDMe SQL API function passing in the address of the getbook_defn struct to

directly execute the stored procedure.

Given that all necessary database operations have been encapsulated in pre-compiled stored procedures the

embedded application executable code does not need to include the SQL compilation module. Figure 2 depicts a

static RDMe SQL application in which the catalog and stored procedures have been compiled in with the

application program and since no dynamic SQL is required, the SQL compilation library is not linked in with the

application code. (Note that this diagram also shows that it is possible for the application to access databases

that are managed by more than one TFS).

 Page | 9 http://www.raima.com

TTeecchhnniiccaall WWhhiittee PPaappeerr

Figure 2 - Static RDMe SQL Application

User-Defined, C-Based Functions, Procedures, and Virtual Tables
RDMe SQL provides three different but related methods by which special purpose processing and data

requirements can be incorporated into SQL. All three methods are implemented by the embedded application

developer in C/C++. A User-Defined Function (UDF) is a scalar or aggregate function that can be used in any SQL

expression. A User-Defined Procedure (UDP) is a C-based module that looks to SQL just like a stored procedure.

An External Table provides the ability to present any kind of data to SQL as a table. As these methods are

similarly implemented, for the sake of brevity, only the details of the external table implementation will be

presented here.

An RDMe SQL external table is defined through a combination of a special DDL CREATE TABLE statement and a set

of user developed C functions that conform to a particular interface specification. A pointer to a pre-defined

structure array that contains an entry for each external table with the addresses of each of the external table

interface functions is passed into SQL before the database is opened. These functions are then called by SQL at

the appropriate times during the execution of any SQL statement that references the external table. This

interaction is depicted in Figure 3 which shows SQL calling the function in the application’s external table

function module to fetch a row of weather data from a wireless sensor network (WSN). Note that in this

example by storing the data retrieved from the external table in a standard table, RDMe can then replicate that

data to an outside host DBMS (e.g., RDM Server, or, if you absolutely have to, some other well-known SQL

DBMS).

 Page | 10 http://www.raima.com

TTeecchhnniiccaall WWhhiittee PPaappeerr

Figure 3 - RDMe SQL Virtual Tables

In a DDL specification, all external table declarations must come after all standard tables have been declared.

For example, the DDL specification for our example weather data WSN might look like the following:

create database weather_db;

create table location(/* location of weather sensor */

 longitude integer,

 latitude integer,

 sensor_id bigint,

 descr char(48),

 county char(24),

 state char(2),

 primary key loc_id(longitude, latitude)

);

create table weather_summary(

 longitude integer,

 latitude integer,

 rdg_date date,

 hour_of_day smallint,

 avg_temp smallint,

 avg_ press smallint,

 avg_hum smallint,

 avg_lumens smallint,

 foreign key (longitude, latitude) references location

);

 Page | 11 http://www.raima.com

TTeecchhnniiccaall WWhhiittee PPaappeerr

Continued…
create external readonly table weather_data(

 sensor_id bigint primary key,

 loc_long integer,

 loc_lat integer,

 rdg_time timestamp,

 temperature smallint,

 pressure smallint,

 humidity smallint,

 light smallint,

 power integer

);

Note that in this example, the external table weather_reading is a read only table. Hence, it can only be

referenced in a SELECT statement. It is also possible to have an external table be updateable so that it can be

referenced in an INSERT, UPDATE or DELETE statement.

The function entry points are declared in the external table function load table as shown in the C code excerpt

below.

XTFLOADTABLE wdFcnTable[] = {

 {"weather_data", wdInit, wdRowCount, wdExecute, wdFetch, wdClose, wdTerm}

};

The XTFLOADTABLE type definition is as follows.

struct xtfloadtable {

 char xtName[NAMELEN]; /* name of the external table */

 PXTINIT xtInit; /* ptr to initialization function */

 PXTROWCOUNT xtRowCount; /* ptr to function that returns the current # rows */

 PXTEXECUTE xtExecute; /* ptr to execution function */

 PXTFETCH xtFetch; /* ptr to fetch next row function */

 PXTCLOSE xtClose; /* ptr to close out select processing */

 PXTTERM xtTerm; /* ptr to termination function */

} XTFLOADTABLE;

An excerpt from the wdExecute and wdFetch functions is given below.

/* ==

 External table execution function

*/

static RSQL_ERRCODE EXTERNAL_FCN wdExecute(/* xtExecute() */

 STMT_TYPE stype, /* type of statement (sqlSELECT, sqlINSERT, etc) */

 int16_t nocols, /* no. of ref'd columns */

 XCOL_INFO *colsvals, /* array of ref'd column value containers */

 RSQL_VALUE *pkeyval, /* ptr to primary key's value */

 WD_CTX *pCtx) /* context pointer */

{

 . . . /* save the nocols & colsvals in the pCtx structure */

 if (pkeyval) {

 . . . /* set up to locate the specified weather sensor */

 }

 Page | 12 http://www.raima.com

TTeecchhnniiccaall WWhhiittee PPaappeerr

Continued…
return errSUCCESS;

}

. . .

/* ==

 External table fetch function

*/

static RSQL_ERRCODE EXTERNAL_FCN wdFetch(/* xtFetch() */

 WD_CTX *pCtx) /* context pointer */

{

 if (no more sensors)

 return errNOMOREDATA;

 . . . /* access the next (or specified) sensor */

 . . . /* save the readings in the appropriate column value containers */

 return errSUCCESS;

}

The wdExecute function is called by SQL when the SELECT statement that references table weather_data is

executed. The STMT_TYPE, XCOL_INFO, RSQL_VALUE data types are declared in a standard RDMe SQL

header file while the WD_CTX type is declared by the application developer in this C module. The pCtx pointer is

allocated by the wdInit function which is called by SQL when the database is first opened. The details of these

types are not important for this discussion except to note that the XCOL_INFO type contains information about

the table column and a pointer to where that column’s data value is to be copied when wdFetch is called.

Hence the need to store these argument values in the context structure pointed to by pCtx.

Function wdFetch is called by SQL during SELECT statement processing to retrieve the next row of data from the

weather sensor network. In this example, a given SELECT will make one reading from either a single sensor

(specified by the pkeyval argument to wdExecute) or all available sensors. After the last sensor has been read,

status code errNOMOREDATA is returned (these status codes are also defined in a standard RDMe SQL header

file).

Only a little imagination is needed to see that data from sources such as a wireless sensor network has no

natural end. As long as the sensors continue to operate, data will always be available. This presents a particularly

difficult problem when the data needs to be summarized over some aggregate collection. In the above example,

a standard table is declared in the database that contains the averages of the readings from each sensor as

collected over each hour of the day. In order to compute these aggregated values, SQL needs to sort the fetched

rows by sensor_id and rdg_time (timestamp when the sensor data was read). But any sort needs to have a

fixed number of rows. How is this done when there are an unlimited number of rows?

To address this problem, the RDMe SQL SELECT statement includes a clause that can limit the number of rows

that are returned as shown in the following syntax.

select_stmt:

 select … from external_table where … limit(num limit_unit)

limit_unit:

 rows | hours | mins | secs | msecs

 Page | 13 http://www.raima.com

TTeecchhnniiccaall WWhhiittee PPaappeerr

The LIMIT clause limits either the number of rows that are returned or the amount of time the SELECT statement

is allowed to run. Thus, the following example shows a SELECT statement that stores the averages per hour from

each weather sensor in the weather_summary table.

insert into weather_summary

 select loc_long, loc_lat, convert(rdg_time,date), hour(rdg_time),

 avg(temperature), avg(pressure), avg(humidity), avg(light) from weather_data

 group by 1,2,4 limit(4 hours);

Each row is fetched and sorted over each four hour span of time. At the end of that time, the sorted data is

scanned and the aggregate calculations performed and the resulting rows are then stored in the

weather_summary table. The time limit can be shorter but, in this case, not any less than an hour as that is

the smallest unit over which the aggregation is made (of course, this assumes that the SELECT is synchronized to

execute at the start of an hour).

Hopefully, from this discussion, the usefulness and power of virtual tables in RDMe SQL for embedded

computing applications is clear.

Other Significant RDM Embedded Features
In addition to the SQL features described above, RDM Embedded provides a variety of capabilities that are also

important in embedded applications:

 Replication: the ability to replicate all or parts of a database between the RDM Embedded database and

other databases (RDM Embedded, RDM Server, or other 3rd party SQL DBMSs).

 Mirroring: the ability to efficiently mirror a database on one or more other RDM Embedded transaction

file servers. This can be used to maintain backups or copies on other computers that are not subject to

the operational constraints of the embedded computing device.

 Read-only Transactions: allow transaction-consistent reading of database content that does not lock out

other update transactions.

 In-memory tables and/or indexes: some or all of a database can be kept entirely in-memory while still

maintaining full ACID database properties.

Conclusion
By shrinking the elephant down to the size of, say, a greyhound, it can now easily fit into the Mini. Whether or

not this satisfies the need to use “standard” SQL in embedded applications will ultimately be decided by the

embedded application developers themselves. Nevertheless, we at Raima are convinced that the SQL we’re

developing will provide just the right choice of features that balance the resource and performance

requirements of many embedded applications with the ease of use of SQL.

 Page | 14 http://www.raima.com

TTeecchhnniiccaall WWhhiittee PPaappeerr

Contact Information

Website: http://www.raima.com

NORTH AMERICA EUROPE

Raima Inc. Raima Inc.
2101 Fourth Avenue Stubbings House
Suite 240 Henley Road
Seattle, WA 98121 Maidenhead, UK SL6 6QL
Telephone: +1 206 748 5300 Telephone: +44 7786 176 375
Fax: +1 206 748 5200 E-mail: sales@raima.com
E-mail: sales@raima.com

http://www.raima.com/
mailto:sales@raima.com
mailto:sales@raima.com

