
 

 

http://www.raima.com 

TECHNICAL WHITE PAPER 

 Building an Application-Specific Database Server Using RDM Server  
A Raima Inc. Technical Whitepaper 

Published:  August, 2008 

Author:  Randall L. Merilatt 

CTO 

Copyright:  Raima Inc., All rights reserved 

Abstract 
How do I turn my application into a database server? This paper discusses and describes how to turn your 

application into a database server using RDM Server. Main reason to do something like this is to remove the 

process boundaries between the data manager and your application to gain performance. Have a look. 

This article is relative to the following versions of RDM: 

 RDM Server: 6.0, 6.1, 7.0, 8.0, and 8.1 

 

 

  

http://www.raima.com/


 

 

Page | 2 http://www.raima.com 

Technical White Paper 

Contents 
Abstract ......................................................................................................................................................................1 

Introduction ................................................................................................................................................................3 

Application Database Server Development Guidelines .............................................................................................5 

Conclusion ..................................................................................................................................................................8 

Contact Information ...................................................................................................................................................8 

 

  

http://www.raima.com/


 

 

Page | 3 http://www.raima.com 

Technical White Paper 

Introduction 
RDM Server provides a powerful capability that allows you to create your own application-specific, 

multithreaded database server. Figure 1 below illustrates the architecture of a typical RDM Server client-server 

application. The shaded areas represent RDM Server components. 

 

Figure 1, RDM Server Client-Server Architecture 

The sample application consists of the following: 

 The client-side program that accesses the server through the RDM Server client interface libraries (for 

example, SQL and/or remote procedure calls) 

  The application-specific server extensions that run on the server 

Communication is provided by the RDM Server Multiple Network Control Processor (MNCP). 

In the classic architecture, communication with the RDM Server is restricted to a separate RDM Server process. 

This process uses the Remote Procedure Call (RPC)/MNCP interface, and RDM Server continues to support this 

architecture. However, a powerful alternative is now available providing more flexibility in the use of RDM 

Server as an embedded database system. In this extended architecture, you can link your application directly to 

the RDM Server engine, which allows your application to become the database server. Refer to Figure 2. 

http://www.raima.com/


 

 

Page | 4 http://www.raima.com 

Technical White Paper 

 

Figure 2, Application Server Architecture 

As an application-specific database server, you choose the type of remote communication protocol you will 

support. For example, ;you might use a protocol provided by the operating system, or use a third-party supplier 

such as COM/DCOM on Windows NT or JAVA. The communication would occur under the control of your 

application, completely outside of RDM Server. To fully benefit from the multithread RDM Server environment, 

your application would launch and manage its own threads, each controlling one or more RDM Server login 

sessions. 

When your application launches RDM Server (through a call to the RDM Server s_startup function) you can 

choose to have RDM Server start its RPC/MNCP threads (shown as the dashed boxes in Figure 2). This gives any 

standard RDM Server client program (for example, third-party ODBC tools) access to the RDM Server database. 

Standalone (non client-server) applications that require the power and performance of a full multithreaded 

database engine will benefit from not having to incur the performance and memory penalties associated with 

access to a separate process (for example, the RDM Server program) through the RDM Server shared-memory 

NCP. 

An interesting example of this involves database support for Internet web server applications as shown in Figure 

3 (shaded boxes are representative resources used by the application extensions). With most Internet web 

server software development kits (such as Microsoft's Internet Information Server or Netscape Server), you can 

develop server extensions much like those in RDM Server. To access a typical DBMS database server, a web 

server extension must connect to that database server and access the database information using the network 

protocols supported by that DBMS. With RDM Server, the database engine can be directly linked with the 

Internet web server thus providing more efficient, faster access to the database information. Very powerful 

http://www.raima.com/


 

 

Page | 5 http://www.raima.com 

Technical White Paper 

database-enabled web applications can be built using the RDM Server embeddable multithreaded database 

engine technology. 

 

Figure 3, Web Server Architecture 

Application Database Server Development Guidelines 

Two administration functions control the startup and termination of the RDM Server database engine, 

s_startup, and s_terminate. 

After invoking RDM Server by calling s_startup, you can initiate any number of login sessions using the s_login 

function. (Note that the server name parameter to s_login is unused when the function is called from an 

application server.) Use of multiple threads will result in better scalability and system throughput. Each thread 

will issue its own s_login calls. Note that it is important that the calls to RDM Server functions are serialized for a 

g iven session. You can accomplish this by issuing all calls for a given session from the same thread. Although you 

are free to directly call the thread management functions provided by your operating system, you can also use 

the RDM Server Resource Manager functions and benefit from the platform independence they provide. 

After all sessions have logged out (s_logout), call s_terminate to shutdown the RDM Server database engine. It 

is truly that simple. Besides the calls to s_startup and s_terminate, everything else works just the same as with 

the client-server architecture, except that your entire application performs like an extension module without 

having to be accessed through the RDM Server RPC interface. Of course, as an application server you are also 

responsible for managing the communication with any client computers. 

If you need standard RDM Server client applications and third-party ODBC access to the RDM Server engine 

running under your application server, two additional functions must be used. To initiate the RDM Server RPC 

subsystem, call function s_startRPCThreads (after s_startup). You must pass to this function the name of the 

server, the number of session threads to be used to handle client login sessions, and the address of a short 

http://www.raima.com/


 

 

Page | 6 http://www.raima.com 

Technical White Paper 

variable used to indicate that a system shutdown has been requested. To shutdown the RPC subsystem, call 

function s_endRPCThreads . This function must be called before calling s_terminate. 

These functions are summarized in the following table. 

Table 1 - RDM Server Control Functions 

Function Description 

s_startup Startup the RDM Server database engine. 

s_startRPCThreads Startup the RDM Server RPC (and NCP) subsystem and launch session 

threads. 

s_endRPCThreads Shutdown the RDM Server RPC subsystem. 

s_terminate Shutdown the RDM Server database engine. 

Use of these functions is illustrated in the simple example code shown below. This example starts up a basic 

RDM Server, server. 

#include "velocis.h" 
static RDSLOGFCN MessageConsole; 
static short shutdown_flag; 
/* Basic RDM Server database server 
*/ 
void main( 
 int argc, 
 char *argv[]) 
{ 
 short stat; 
 char *catpath = NULL; 
 char *server = "RDM Server"; 
 if ( argc > 1 ) { 
  /* server name is first argument, default = "RDM Server" */ 
  server = argv[1]; 
  if ( argc > 2 ) { 
   /* alternate catalog path is second argument */ 
   catpath = argv[2]; 
  } 
 } 
 stat = s_startup(catpath, MessageConsole, LOG_ALL); 
 if ( stat != S_OKAY ) { 
  printf("Unable to start RDM Server engine, status = %d\n", stat); 
  exit(1); 
 } 
 rm_interrupt(&shutdown_flag); 
 stat = s_startRPCThreads(server, noSessionThreads, &shutdown_flag); 
 if ( stat != S_OKAY ) { 
  printf("Unable to start RDM Server RPC server, status = %d\n", stat); 
  exit(1); 
 } 
 while ( ! shutdown_flag ) 
 rm_sleep(5000L); 
 s_endRPCThreads(); 
 s_terminate(); 
} 

The program takes two command line arguments. The first is the name of the server. The second argument, if 

specified, is the directory path to the RDM Server catalog directory. 

The call to the s_startup function has three parameters: 

http://www.raima.com/


 

 

Page | 7 http://www.raima.com 

Technical White Paper 

1. The first is a string containing the catalog directory path. If NULL, RDM Server will get the path from the 

CATPATH environment variable or, barring that, the current directory. An error is returned if the catalog 

cannot be found. 

2. The second parameter is the address of your own RDM Server message log function. This function will 

be called to process every error or information message generated by the RDM Server database engine. 

If you specify NULL, the default behavior is to output each message to stdout and to the rds.log file. 

3. The third parameter specifies the message classes to be logged. This example specifies that all messages 

will be logged (refer to the s_startup function description for a list of all message types). Note that if 

s_startup returns an error, the messages relating to that error will have already been logged. 

The log function itself is shown below, and it is passed three parameters. 

1. The first indicates whether the function will open its log message processing, just log a message, or close 

the message log. The options are indicated by the constants RDSLOG_OPEN, RDSLOG_MESSAGE, and 

RDSLOG_CLOSE. 

2. The second parameter specifies the message type, such as error, warning, or information message. 

3. The third parameter is the message string. This particular example is trivial but illustrates the basic 

construction. 

/* Log RDM Server console message 
*/ 
void MessageConsole( 
 RDSLOG_CTRL fcn,  /* call type: open, close, message */ 
 short type,    /* message type */ 
 char *msg)    /* message to be logged */ 
{ 
 static FILE *errlog; 
 switch ( fcn ) { 
  case RDSLOG_OPEN: 
   errlog = fopen("RDM Server.log", "w"); 
   break; 
  case RDSLOG_MESSAGE: 
   if ( type == LOG_ERROR ) { 
    /* make sure this gets noticed */ 
    fprintf(errlog, "******* ERROR! ******* "); 
    printf("******* ERROR! ******* "); 
   } 
   fprintf(errlog, "%s\n", msg); 
   printf("%s\n", msg); 
   break; 
  case RDSLOG_CLOSE: 
   fclose(errlog); 
   break; 
 } 
} 

After the RDM Server engine has been successfully started, function rm_interrupt is called to enable the capture 

of any user-initiated program interrupts. The single parameter specifies the address of a short variable 

(shutdown_flag) that will be set to 1 when a user-interrupt occurs. 

The call to function s_startRPCThreads invokes the RDM Server RPC/NCP subsystem specifying the server name 

and the number of session threads to be launched. The session threads form a pool of threads that will handle 

the execution of one or more user login sessions. The system is designed so that all active login sessions can be 

http://www.raima.com/


 

 

Page | 8 http://www.raima.com 

Technical White Paper 

handled by a fixed number of session threads that is smaller than the actual number of active login sessions. If 

the number of threads value is zero then the default number from the rdm server.ini file will be used. The third 

parameter is a pointer to a short variable (again we're using shutdown_flag) that will be set to 1 in the event 

that some administrator user has requested a system shutdown. 

The system now begins an indefinite series of 5 second naps ended only when the shutdown_flag has been set 

either through a user-interrupt or by some remote administrator requesting a system shutdown. Once the 

shutdown_flag is set, the program calls s_endRPCThreads to shut down the RPC/NCP subsystem and then calls 

s_terminate to shut down the RDM Server database engine. 

Conclusion 

And that concludes our discussion of how to build an application-specific database server with RDM Server. 

Besides just having it sleep, the program might contain a user interface that could, for example, perform many 

of the administration duties handled by the admin or dram utilities. There may also be application-specific 

administration capabilities that you would like to restrict to the server computer itself. Any single computer 

application that requires a high performance database engine is an ideal use for this technology. Examples 

include tape backup systems, real-time event monitors, and telephone switching systems. 

The ability to directly link a full-featured, high-performance database management engine to an application is 

one of the unique features of Raima's RDM Server product making it the premier commercial embedded DBMS 

offering available today. 

Contact Information 

Website: http://www.raima.com 

WORLDWIDE EUROPE 

Raima Inc. Raima Inc. 

720 Third Avenue, Suite 1100 Stubbings House, Henley Road 

Seattle, WA 98104 Maidenhead SL6 6QL, United Kingdom 

Telephone:  +1 206 748 5300 Telephone:  +44 1628 826 800 

Fax:  +1 206 748 5200 Fax:  +44 1628 825 343 

E-mail:  sales@raima.com E-mail:  sales@raima.com  

 

http://www.raima.com/
http://www.raima.com/
mailto:sales@raima.com
mailto:sales@raima.com

